机器学习中,当原始数据的分类极不均衡,需要对不平衡数据进行处理,而下采样就是处理方法之一。简单来说就是从多数类中随机抽取样本从而减少多数类样本的数量,使数据达到平衡。
下采样,通常适用于正负样本相差较大,而且小样本数据不足的情况。就是将大样本中数据使用一定的方法取出一部分,让正负样本数量相当。但是下采样的缺点也很明显,就是没有学到全部的数据,只考虑了部分数据的情况。
下采样的方法常见的有:
1.随机下采样法。这种方法不能考虑到全部数据,在使用过程中会使用一些方式减小信息的损失。方法很简单,从多数类样本中随机选取一些,直接剔除掉。这种方法的最大缺点是,没有考虑到全部数据,被剔除的样本可能包含着一些重要信息,导致最终学习出来的模型效果比较差。
2.EasyEnsemble,就是利用模型融合的方法,将多数类样本随机划分成n个子集,每个子集的数量等于少数类样本的数量,多次进行下采样产生多个不同的模型,通过组合这些模型的结果,得到最终的结果。
3.BalanceCascade,即利用增量训练也就是有监督结合Boosting的方法,在第n轮训练中,将从多数类样本中抽样得来的子集与少数类样本结合起来训练一个基学习器H,训练完后多数类中能被H正确分类的样本不放回,然后对剩下的样本训练生成第二个基学习器,以此类推,最后将不同的基学习器集成起来。
3.NearMiss,本质上是一种原型选择(prototype selection)方法,就是从多数类样本中选取最具代表性的样本用于训练,这主要是为了缓解随机欠采样中的信息丢失问题。NearMiss采用一些启发式的规则来选择样本,根据规则的不同可分为3类:
NearMiss-1:选择到最近的K个少数类样本平均距离最近的多数类样本
NearMiss-2:选择到最远的K个少数类样本平均距离最近的多数类样本
NearMiss-3:对于每个少数类样本选择K个最近的多数类样本,目的是保证每个少数类样本都被多数类样本包围
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20