感知机(Perceptron)或者叫做感知器,是Frank Rosenblatt在1957年就职于Cornell航空实验室(Cornell Aeronautical Laboratory)时所发明的一种人工神经网络,是机器学习领域最基础的模型,被誉为机器学习的敲门砖。
感知机是生物神经细胞的简单抽象,可以说是形式最简单的一种前馈神经网络,是一种二元线性分类模型。感知机的输入为实例的特征向量,输出为实例的类别取+1和-1.虽然现在看来感知机的分类模型,大多数情况下的泛化能力不是很强,但是感知机是最古老的分类方法之一,是神经网络的雏形,同时也是支持向量机的基础,如果能够将感知机研究透彻,对我们支持向量机、神经网络的学习也有很大帮助。
一、感知机模型
感知机的几何解释:线性方程
二·、感知机算法
1.原始形式
from random import randint import numpy as np import matplotlib.pyplot as plt class TrainDataLoader: def __init__(self): pass def GenerateRandomData(self, count, gradient, offset): x1 = np.linspace(1, 5, count) x2 = gradient*x1 + np.random.randint(-10,10,*x1.shape)+offset dataset = [] y = [] for i in range(*x1.shape): dataset.append([x1[i], x2[i]]) real_value = gradient*x1[i]+offset if real_value > x2[i]: y.append(-1) else: y.append(1) return x1,x2,np.mat(y),np.mat(dataset) class SimplePerceptron: def __init__(self, train_data = [], real_result = [], eta = 1): self.w = np.zeros([1, len(train_data.T)], int) self.b = 0 self.eta = eta self.train_data = train_data self.real_result = real_result def nomalize(self, x): if x > 0 : return 1 else : return -1 def model(self, x): # Here are matrix dot multiply get one value y = np.dot(x, self.w.T) + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def update(self, x, y): # w = w + n*y_i*x_i self.w = self.w + self.eta*y*x # b = b + n*y_i self.b = self.b + self.eta*y def loss(slef, fx, y): return fx.astype(int)*y def train(self, count): update_count = 0 while count > 0: # count-- count = count - 1 if len(self.train_data) <= 0: print("exception exit") break # random select one train data index = randint(0,len(self.train_data)-1) x = self.train_data[index] y = self.real_result.T[index] # wx+b predict_v, linear_y_v = self.model(x) # y_i*(wx+b) > 0, the classify is correct, else it's error if self.loss(y, linear_y_v) > 0: continue update_count = update_count + 1 self.update(x, y) print("update count: ", update_count) pass def verify(self, verify_data, verify_result): size = len(verify_data) failed_count = 0 if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] if self.loss(y, self.model(x)[1]) > 0: continue failed_count = failed_count + 1 success_rate = (1.0 - (float(failed_count)/size))*100 print("Success Rate: ", success_rate, "%") print("All input: ", size, " failed_count: ", failed_count) def predict(self, predict_data): size = len(predict_data) result = [] if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] result.append(self.model(x)[0]) return result if __name__ == "__main__": # Init some parameters gradient = 2 offset = 10 point_num = 1000 train_num = 50000 loader = TrainDataLoader() x, y, result, train_data = loader.GenerateRandomData(point_num, gradient, offset) x_t, y_t, test_real_result, test_data = loader.GenerateRandomData(100, gradient, offset) # First training perceptron = SimplePerceptron(train_data, result) perceptron.train(train_num) perceptron.verify(test_data, test_real_result) print("T1: w:", perceptron.w," b:", perceptron.b) # Draw the figure # 1. draw the (x,y) points plt.plot(x, y, "*", color='gray') plt.plot(x_t, y_t, "+") # 2. draw y=gradient*x+offset line plt.plot(x,x.dot(gradient)+offset, color="red") # 3. draw the line w_1*x_1 + w_2*x_2 + b = 0 plt.plot(x, -(x.dot(float(perceptron.w.T[0]))+float(perceptron.b))/float(perceptron.w.T[1]) , color='green') plt.show()2.对偶形式
from random import randint import numpy as np import matplotlib.pyplot as plt class TrainDataLoader: def __init__(self): pass def GenerateRandomData(self, count, gradient, offset): x1 = np.linspace(1, 5, count) x2 = gradient*x1 + np.random.randint(-10,10,*x1.shape)+offset dataset = [] y = [] for i in range(*x1.shape): dataset.append([x1[i], x2[i]]) real_value = gradient*x1[i]+offset if real_value > x2[i]: y.append(-1) else: y.append(1) return x1,x2,np.mat(y),np.mat(dataset) class SimplePerceptron: def __init__(self, train_data = [], real_result = [], eta = 1): self.alpha = np.zeros([train_data.shape[0], 1], int) self.w = np.zeros([1, train_data.shape[1]], int) self.b = 0 self.eta = eta self.train_data = train_data self.real_result = real_result self.gram = np.matmul(train_data[0:train_data.shape[0]], train_data[0:train_data.shape[0]].T) def nomalize(self, x): if x > 0 : return 1 else : return -1 def train_model(self, index): temp = 0 y = self.real_result.T # Here are matrix dot multiply get one value for i in range(len(self.alpha)): alpha = self.alpha[i] if alpha == 0: continue gram_value = self.gram[index].T[i] temp = temp + alpha*y[i]*gram_value y = temp + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def verify_model(self, x): # Here are matrix dot multiply get one value y = np.dot(x, self.w.T) + self.b # Use sign to nomalize the result predict_v = self.nomalize(y) return predict_v, y def update(self, index, x, y): # alpha = alpha + 1 self.alpha[index] = self.alpha[index] + 1 # b = b + n*y_i self.b = self.b + self.eta*y def loss(slef, fx, y): return fx.astype(int)*y def train(self, count): update_count = 0 train_data_num = self.train_data.shape[0] print("train_data:", self.train_data) print("Gram:",self.gram) while count > 0: # count-- count = count - 1 if train_data_num <= 0: print("exception exit") break # random select one train data index = randint(0, train_data_num-1) if index >= train_data_num: print("exceptrion get the index") break; x = self.train_data[index] y = self.real_result.T[index] # w = \sum_{i=1}^{N}\alpha_iy_iGram[i] # wx+b predict_v, linear_y_v = self.train_model(index) # y_i*(wx+b) > 0, the classify is correct, else it's error if self.loss(y, linear_y_v) > 0: continue update_count = update_count + 1 self.update(index, x, y) for i in range(len(self.alpha)): x = self.train_data[i] y = self.real_result.T[i] self.w = self.w + float(self.alpha[i])*x*float(y) print("update count: ", update_count) pass def verify(self, verify_data, verify_result): size = len(verify_data) failed_count = 0 if size <= 0: pass for i in range(size-1): x = verify_data[i] y = verify_result.T[i] if self.loss(y, self.verify_model(x)[1]) > 0: continue failed_count = failed_count + 1 success_rate = (1.0 - (float(failed_count)/size))*100 print("Success Rate: ", success_rate, "%") print("All input: ", size, " failed_count: ", failed_count) def predict(self, predict_data): size = len(predict_data) result = [] if size <= 0: pass for i in range(size): x = verify_data[i] y = verify_result.T[i] result.append(self.model(x)[0]) return result if __name__ == "__main__": # Init some parameters gradient = 2 offset = 10 point_num = 1000 train_num = 1000 loader = TrainDataLoader() x, y, result, train_data = loader.GenerateRandomData(point_num, gradient, offset) x_t, y_t, test_real_result, test_data = loader.GenerateRandomData(100, gradient, offset) # train_data = np.mat([[3,3],[4,3],[1,1]]) # First training perceptron = SimplePerceptron(train_data, result) perceptron.train(train_num) perceptron.verify(test_data, test_real_result) print("T1: w:", perceptron.w," b:", perceptron.b) # Draw the figure # 1. draw the (x,y) points plt.plot(x, y, "*", color='gray') plt.plot(x_t, y_t, "+") # 2. draw y=gradient*x+offset line plt.plot(x,x.dot(gradient)+offset, color="red") # 3. draw the line w_1*x_1 + w_2*x_2 + b = 0 plt.plot(x, -(x.dot(float(perceptron.w.T[0]))+float(perceptron.b))/float(perceptron.w.T[1]) , color='green') plt.show()
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21