
在数据分析过程中,我们会用到各种各样的数据模型。但有些模型并不是完美的,存在者各种各样的缺点,置之不理很可能会影响最终的数据分析结果。这也就意味着,我们需要让模型最优化。通过模型优化,训练出更好的模型,更好的进行数据分析。下面,小编简单整理了几种常用的模型优化方法,希望对大家有所帮助。
1. 梯度下降法(Gradient Descent)
梯度下降法——最早的、最容易,同时也是最长用到的模型优化方法。
梯度下降法实现很容易,在目标函数为凸函数的情况下,梯度下降法的解就是全局解。通常来说,其解是全局最优解这一点并不能保证,而且梯度下降法,它的速度也并不是最快的。梯度下降法的优化思想为:把当前位置负梯度的方向当做搜索方向,这是该这一方向是当前位置的最快下降方向,所以又有”最速下降法“的叫法。梯度下降法越是接近目标值,其步长就会越小,前进也会越慢。
2. 牛顿法和拟牛顿法
a.牛顿法(Newton's method)
牛顿法其实是一种在实数域和复数域上,近似求解方程的方法。此方法使用f (x)函数的泰勒级数里的前面几项来找寻方程f (x) = 0的根。收敛速度快是此方法最大的特点。
因为牛顿法是确定下一次的位置依靠的是当前位置的切线,所以又有"切线法"这一很形象的名称。
b.拟牛顿法(Quasi-Newton Methods)
拟牛顿法可以说是非线性优化问题求解最常用的、最有效的方法了。拟牛顿法是20世纪50年代,由美国Argonne国家实验室的物理学家W.C.Davidon提出的·,这一算法在当时的时代,无疑是非线性优化领域最具有创造性的发明之一了。
拟牛顿法的本质思想为:对牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵这一缺陷进行改善。拟牛顿法使用正定矩阵来近似Hessian矩阵的逆,这样在很大程度上减小了运算的复杂度。拟牛顿法与梯度下降法相同,只对每一步迭代时知道目标函数的梯度有要求。通过测量梯度的变化,构造出一个目标函数的模型,并使之足以产生超线性收敛性。而且相比牛顿法,拟牛顿法并不需要二阶导数的信息,所以有时反而比牛顿法更有效。
3. 共轭梯度法(Conjugate Gradient)
共轭梯度法是介于梯度下降法与牛顿法之间的一个模型优化方法,只需要利用一阶导数信息,但却改善了梯度下降法收敛速度慢这一缺陷,同时又克服了,牛顿法需要存储和计算Hesse矩阵,并求逆的缺点。共轭梯度法既能解决大型线性方程组问题,又是解大型非线性最优化最有用的算法之一。因为共轭梯度法具有所需存储量小,步收敛性,高稳定性,不需要任何外来参数的优点,在各种模型优化方法中,是极为重要的一种。
4. 启发式优化方法
启发式优化方法指的是:人在解决问题时,所采取的一种根据经验规则进行发现的方法。这一方法特点是,当解决问题时,可以利用过去的经验,选择行之有效的方法,而并不是以系统的、确定的步骤去找寻答案。启发式优化方法有很多种类,其中最为经典的有:模拟退火方法、遗传算法、蚁群算法以及粒子群算法等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04