在数据分析过程中,我们会用到各种各样的数据模型。但有些模型并不是完美的,存在者各种各样的缺点,置之不理很可能会影响最终的数据分析结果。这也就意味着,我们需要让模型最优化。通过模型优化,训练出更好的模型,更好的进行数据分析。下面,小编简单整理了几种常用的模型优化方法,希望对大家有所帮助。
1. 梯度下降法(Gradient Descent)
梯度下降法——最早的、最容易,同时也是最长用到的模型优化方法。
梯度下降法实现很容易,在目标函数为凸函数的情况下,梯度下降法的解就是全局解。通常来说,其解是全局最优解这一点并不能保证,而且梯度下降法,它的速度也并不是最快的。梯度下降法的优化思想为:把当前位置负梯度的方向当做搜索方向,这是该这一方向是当前位置的最快下降方向,所以又有”最速下降法“的叫法。梯度下降法越是接近目标值,其步长就会越小,前进也会越慢。
2. 牛顿法和拟牛顿法
a.牛顿法(Newton's method)
牛顿法其实是一种在实数域和复数域上,近似求解方程的方法。此方法使用f (x)函数的泰勒级数里的前面几项来找寻方程f (x) = 0的根。收敛速度快是此方法最大的特点。
因为牛顿法是确定下一次的位置依靠的是当前位置的切线,所以又有"切线法"这一很形象的名称。
b.拟牛顿法(Quasi-Newton Methods)
拟牛顿法可以说是非线性优化问题求解最常用的、最有效的方法了。拟牛顿法是20世纪50年代,由美国Argonne国家实验室的物理学家W.C.Davidon提出的·,这一算法在当时的时代,无疑是非线性优化领域最具有创造性的发明之一了。
拟牛顿法的本质思想为:对牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵这一缺陷进行改善。拟牛顿法使用正定矩阵来近似Hessian矩阵的逆,这样在很大程度上减小了运算的复杂度。拟牛顿法与梯度下降法相同,只对每一步迭代时知道目标函数的梯度有要求。通过测量梯度的变化,构造出一个目标函数的模型,并使之足以产生超线性收敛性。而且相比牛顿法,拟牛顿法并不需要二阶导数的信息,所以有时反而比牛顿法更有效。
3. 共轭梯度法(Conjugate Gradient)
共轭梯度法是介于梯度下降法与牛顿法之间的一个模型优化方法,只需要利用一阶导数信息,但却改善了梯度下降法收敛速度慢这一缺陷,同时又克服了,牛顿法需要存储和计算Hesse矩阵,并求逆的缺点。共轭梯度法既能解决大型线性方程组问题,又是解大型非线性最优化最有用的算法之一。因为共轭梯度法具有所需存储量小,步收敛性,高稳定性,不需要任何外来参数的优点,在各种模型优化方法中,是极为重要的一种。
4. 启发式优化方法
启发式优化方法指的是:人在解决问题时,所采取的一种根据经验规则进行发现的方法。这一方法特点是,当解决问题时,可以利用过去的经验,选择行之有效的方法,而并不是以系统的、确定的步骤去找寻答案。启发式优化方法有很多种类,其中最为经典的有:模拟退火方法、遗传算法、蚁群算法以及粒子群算法等等。
数据分析咨询请扫描二维码
作为数据分析领域的探险家,我们常常面临着选择正确工具和技能的挑战。在这个数字化时代,学会并精通适合行业需求的工具显得尤为 ...
2024-12-03在数据分析领域,掌握多种软件和编程语言至关重要,选择合适的工具取决于个人需求和背景。让我们一起探索常用的数据分析工具及其 ...
2024-12-03在数据驱动的时代,数据分析成为了关键的技能。选择合适的数据分析工具至关重要,因为它们直接影响着你对数据的理解和分析效果。 ...
2024-12-03在当今数字化时代,数据分析已经成为各行各业中至关重要的角色。随着技术的迅猛发展和数据量的爆炸增长,数据分析师需要不断提升 ...
2024-12-03在当今数据驱动的世界中,数据分析已成为企业决策制定和战略规划的关键。其中,数据可视化是将复杂数据转化为简洁、易懂图形的重 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。学会利用数据进行分析不仅是一种技能,更是一种战略性决策工具。本文将探讨学 ...
2024-12-03揭示数据的无限价值 学习数据分析不仅仅是一种技能,更是探索信息海洋中宝藏的钥匙。数据分析的实用性体现在多个领域,如企业决 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。成为一名优秀的数据分析师,不仅需要具备技术实力,更需要拥有跨学科的知识储 ...
2024-12-03在当今数据驱动的世界中,成为一名优秀的数据分析师需要具备多方面的技能和知识。从统计学基础到机器学习算法,再到沟通能力和业 ...
2024-12-03在当今信息爆炸的时代,数据分析扮演着至关重要的角色。从商业决策到科学研究,数据分析为我们提供了深刻的洞察力和指导方向。然 ...
2024-12-03数据分析的基础知识 数据分析是一个多步骤且复杂的过程,旨在从数据中提取有价值信息以支持决策。这涉及数据的收集、清洗、转换 ...
2024-12-03数据分析是一门引人入胜且充满挑战的领域,它串联着数据的意义与我们的决策需求。无论你是初学者还是经验丰富的专家,掌握数据分 ...
2024-12-03数据分析培训的就业前景展现出令人振奋的态势。随着大数据、人工智能等前沿技术的快速发展,数据分析在各行各业中的应用愈发广泛 ...
2024-12-03在当今数字化时代,数据分析技能的重要性日益凸显。随着大数据、人工智能等领域的迅速发展,数据分析已经成为各行各业中备受瞩目 ...
2024-12-03作为一名数据分析师,除了扎实的数学基础外,掌握软技能同样至关重要。本文将深入探讨数据分析领域中不可或缺的软技能,并结合个 ...
2024-12-03市场需求与技术驱动 数据分析师的职业前景广阔,市场需求旺盛。在金融、医疗、零售、科技等领域,企业对数据分析师的需求不断攀 ...
2024-12-03市场需求与前景 数据分析师的职业前景广阔,伴随着多元化技能要求和清晰的职业发展路径。 在金融、医疗、零售、科技等领域, ...
2024-12-03作为数据分析师,掌握正确的工具和技能至关重要。在当今数据驱动的世界中,Python作为一种多才多艺的编程语言,在数据分析领域扮 ...
2024-12-03在当今数据驱动的世界中,数据分析师扮演着至关重要的角色。他们需要掌握各种工具和技能来从海量数据中提炼出有价值的信息。其中 ...
2024-12-03数据分析实践是一门引人入胜的艺术,融合了技术与创意,为各行业带来前所未有的洞察力与决策支持。本文将探讨数据分析实战案例的 ...
2024-12-03