
层次聚类,即Hierarchical Clustering,是一种聚类算法,通过对不同类别数据点间的相似度的计算,从而创建一棵有层次的嵌套聚类树。
一、层次聚类算法原理
在聚类树中,树的最底层是不同类别的原始数据点,树的顶层则是一个聚类的根节点。层次聚类算法按照层次分解的顺序可分为:自下向上也,就是凝聚的层次聚类算法,以及自上向下即分裂的层次聚类算法(agglomerative和divisive),又可以被称为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法简单理解为:一开始每一个个体(object)都是一个类,然后再根据linkage寻找同类,最后合并,形成一个“类”。自上而下法与自下而上法相反,是开始所有个体都归属于一个“类”,然后通过linkage排除异类,最后每一个个体都成为一个“类”。
在层次聚类算法中, 最关键的在于计算两个聚类间的距离,根据计算两个聚类之间距离的算法的不同,能够分为以下四种聚类算法:
Single Linkage:两个数据集间的最小距离
Complete Linkage:两个数据集间的最大距离
以上两种方法很容易受到极端值的影响,计算大样本集效率较高。
Average Linkage:任意两个数据集的距离之和的平均值。这种方法虽然计算量比较大,但是这种度量方法更合理。
Ward:最小化簇内方差。假设聚类A的中心点为a,聚类B的中心点为b,A、B合并后的聚类为C,其中心点为c,则聚类A、B的距离为:
二、层次聚类的优缺点
优点:
1.距离和规则的相似度比较容易定义,限制很少;
2.不需要预先制定聚类数;
3.能够发现类的层次关系;
4.能够聚类成其它形状
缺点:
1.计算的复杂度很高;
2.即使是奇异值也会产生很大影响;
3.算法很可能会聚类成链状
三、sklearn中的层次聚类
##导入库
from sklearn.cluster import AgglomerativeClustering
##建模,并指定聚类个数
ward = AgglomerativeClustering(n_clusters=3)
##拟合并预测数据
ward_pred = ward.fit_predict(data)
绘制系统树:
from scipy.cluster.hierarchy import linkage,dendrogram
import matplotlib.pyplot as plt
#指定连接类型为离差平方和法
linkage_type = ‘ward’
#拟合数据,并得到关联矩阵
linkage_matrix = linkage(X, linkage_type)
#创建窗口
plt.figure(figsize=(22.18))
#将关联矩阵输送到系统方法
dendrogram(linkage_matrix)
#显示
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13