层次聚类,即Hierarchical Clustering,是一种聚类算法,通过对不同类别数据点间的相似度的计算,从而创建一棵有层次的嵌套聚类树。
一、层次聚类算法原理
在聚类树中,树的最底层是不同类别的原始数据点,树的顶层则是一个聚类的根节点。层次聚类算法按照层次分解的顺序可分为:自下向上也,就是凝聚的层次聚类算法,以及自上向下即分裂的层次聚类算法(agglomerative和divisive),又可以被称为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法简单理解为:一开始每一个个体(object)都是一个类,然后再根据linkage寻找同类,最后合并,形成一个“类”。自上而下法与自下而上法相反,是开始所有个体都归属于一个“类”,然后通过linkage排除异类,最后每一个个体都成为一个“类”。
在层次聚类算法中, 最关键的在于计算两个聚类间的距离,根据计算两个聚类之间距离的算法的不同,能够分为以下四种聚类算法:
Single Linkage:两个数据集间的最小距离
Complete Linkage:两个数据集间的最大距离
以上两种方法很容易受到极端值的影响,计算大样本集效率较高。
Average Linkage:任意两个数据集的距离之和的平均值。这种方法虽然计算量比较大,但是这种度量方法更合理。
Ward:最小化簇内方差。假设聚类A的中心点为a,聚类B的中心点为b,A、B合并后的聚类为C,其中心点为c,则聚类A、B的距离为:
二、层次聚类的优缺点
优点:
1.距离和规则的相似度比较容易定义,限制很少;
2.不需要预先制定聚类数;
3.能够发现类的层次关系;
4.能够聚类成其它形状
缺点:
1.计算的复杂度很高;
2.即使是奇异值也会产生很大影响;
3.算法很可能会聚类成链状
三、sklearn中的层次聚类
##导入库
from sklearn.cluster import AgglomerativeClustering
##建模,并指定聚类个数
ward = AgglomerativeClustering(n_clusters=3)
##拟合并预测数据
ward_pred = ward.fit_predict(data)
绘制系统树:
from scipy.cluster.hierarchy import linkage,dendrogram
import matplotlib.pyplot as plt
#指定连接类型为离差平方和法
linkage_type = ‘ward’
#拟合数据,并得到关联矩阵
linkage_matrix = linkage(X, linkage_type)
#创建窗口
plt.figure(figsize=(22.18))
#将关联矩阵输送到系统方法
dendrogram(linkage_matrix)
#显示
plt.show()
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20