网站数据分析实战—用户偏好分析_数据分析师
熟悉网站分析的朋友们都知道,GA(Google Analytics)中可以关联不同的维度(Dimension),比如“城市”和“产品”,通过关联(Sub-relation),我们可以得到不同城市下,各产品的相关数据。在Omniture的几个网站分析工具中,也同样能够对某个eVar根据按另一个eVar来breakdown。
好了,废话不多说,接下来就让我们一起去发现一些有趣的事情!
Step 1. 获取数据
1.a 请生成一张报表,
维度(Dimension):城市(Cities)
指标(Metric):购买数量/销量(Units)
时间段可根据需要设定,时间粒度(Granularity)在Omniture中选None/aggregate,表示把时间以聚合的方式展现,而不是按daily、monthly等方式来划分,GA中同理。
好了,我们得到了一张关于各个城市的访客所产生的订单数的报告,第三列Ratio是经过计算得到的各城市订单数占总体的比例。这里假定了只有图表中所列出的10个城市,所有数据均为模拟数据。
1.b 类似上一张城市报告,我们再获得一份产品类(Product Category)的报告,维度:Category, 指标:Units,获得的报告如下
* 这里需要注意,你所看到的两张表中的Units总量是一样的,但如果你选择了Orders作为Metric的话,那么品类报告中的Orders应该会大一些,因为有些用户的单个订单横跨了不同的产品类。比如实际情况是你下了一个订单,包含了一台VAIO和一台DSC,那么在产品类报告中这1个订单会被分拆为2个,各自归属到2个品类中。如果Orders总量相差不大,那不用太在意这个差异,如果你觉得差异让你无法接受的话,那也不难,对城市报告中的数据做个简单处理:处理后各城市订单数 = 处理前各城市订单数 * (产品类报告订单总数 / 处理前城市订单总数)。但是这样的处理会稍许影响到后续介绍的计算过程,当然,只要你保持头脑清醒,相信在理解了算法后根据需要来修改也不是难事。
1.c 获得一份Sub-relation的报告,第一个维度选择城市,第二个维度选产品类,指标仍然是Units,报表如下:
City Breakdown by Category
限于篇幅,图中只显示了Shanghai的数据,实际应该是所有其它城市都会得到跟Shanghai类似结构的数据。由于本例中共有10个城市和10个产品类,因此得到的数据应该是10*10=100行。同样,这里的Units总量应该与之前的相同。
从表中我们可以知道,在Shanghai所产生的962个Units中,VAIO占了378个,DSC占了112个,这个很容易理解。
Step 2. 数据处理
Difference
如上图所示,我们在1.c报表的基础上,新增一列Predicted Units,作为我们预测的商品销量,怎么计算呢?Predicted Units = 1.a中Shanghai的 Units * 1.b中VAIO的Ratio(或者1.a中Shanghai 的 Ratio * 1.b中VAIO的Units也是一样的)
然后我们再新增一列Difference,表示实际值与预测值的差异程度,计算方式为:
Difference = (Units – Predicted Units) / Predicted Units
Step 3. 数据解读
不难理解,如果实际值大于预测值,Difference为正,反之为负,实际值与预测值差异越大,Difference的绝对值越大。
既然需要的数据都有了,该怎么看我们用户的偏好呢?如何去发现那些有价值的信息呢?
Difference 一列中,最抓人眼球(eye-catching)的显然是Shanghai-DSC那行了,372%。这表示,Shanghai的用户比我们想象中的更热衷于DSC产品,而且是远远大于预期。同样,VAIO、Tablet等产品在Shanghai用户中的销售情况也比我们的预期要好。而HIFI的-80%,MDR的-59%,说明了Shanghai的用户对这些产品并不是非常感兴趣。当然,如果在做这个分析前,你已经对你的某些产品做了定向投放,那么会一定程度上影响该报告的解读,这时候,我的建议是:
1. case by case的来分析那些定向投放了的产品,需要综合考虑你的投放情况及业务情况
2. 剔除那部分定向投放了的产品及密切相关的产品,从而解读那些未受太大影响的产品数据。
到这里,如果在读这篇文章的你正从事Online Marketing等相关的工作,不知道有没有能够触动到你的神经呢?SEM、adwords等广告投放平台中的地理位置定位,能通过这个分析得到改进吗?花钱买的广告,真的投放给那些感兴趣的用户了吗?……
本文所谓的预测,并没有基于什么很高级的算法,只是先假定了我们的所有用户的偏好是一致的,基于这个假设,两个维度关联后的情况应当与两个维度独立时所推断的情况一致。还是举个简单的例子来说明吧。假定双胞胎姐妹总共吃了4个水果,又知道水果中香蕉被吃了2个,苹果也被吃了2个。如果姐妹俩的偏好一致,我们可以认为姐妹应该各自吃了1个香蕉1个苹果。然而真实的情况是姐姐吃了2两个香蕉,妹妹吃了2两个苹果,也就是说,姐姐比我们所认为的多吃了1个香蕉而少吃了1个苹果,那么她的偏好应该是爱吃香蕉而不爱吃苹果。
当然,这样的预测方法由于少考虑了很多因素而并变得不是很精准,但笔者认为,这不会是什么很大的问题。虽然我们的计算过程是定量的,但我们的目的只是定性而已,380%的Difference在这个方法中跟370%没有什么太大的区别。而且,以损失一些精度为代价,获得更高的效率并非什么不可原谅的事,毕竟我们是在商场里作战,而不是在学校码论文。
最后想说的是,本文所举例子是不同城市用户关于不同产品类的购买偏好分析,实际上,朋友们完全可以根据自己的业务需求来驱动类似的分析,比如关联用户的操作系统(Operating System)和浏览器(Browser),指标选择访问数(Visits),便能了解到你网站的用户在不同操作平台上更喜欢用哪种浏览器。
理论上来说,任意两个维度都可以关联起来,且能说明些问题,但不建议强行地去关联两个维度,然后绞尽脑汁地去赋予它某种意义,不要为了分析而分析。还是那句话,以业务需求来确定分析目标,再以分析结果来驱动业务发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27