Pandas是一款很强大的Python库,具有很多方便的功能,今天小编就给大家分享用Pandas修改样式。
以下内容转载于早起Python微信公众号。
作者:刘早起
文章来源:早起Python
前言
在之前的很多文章中我们都说过,Pandas与openpyxl有一个很大的区别就是openpyxl可以进行丰富的样式调整,但其实在Pandas中每一个DataFrame都有一个Style属性,我们可以通过修改该属性来给数据添加一些基本的样式。
使用说明
我们可以编写样式函数,并使用CSS来控制不同的样式效果,通过修改Styler对象的属性,将样式传递给DataFrame,主要有两种传递方式
Styler.applymap:逐元素
Styler.apply:列/行/表方式
Styler.applymap通过DataFrame逐个元素地工作。Styler.apply根据axis参数,按列使用axis=0.按行使用axis=1.以及axis=None作用于整个表。所以若使用Styler.applymap,我们的函数应返回带有CSS属性-值对的单个字符串。若使用Styler.apply,我们的函数应返回具有相同形状的Series或DataFrame,其中每个值都是具有CSS属性值对的字符串。
不会CSS?没关系,作为调包侠的我们大多是改改HTML颜色代码即可完成样式修改,下面看一些示例。
一些例子
基本样式
首先我们创建一组没有任何样式的数据
我们之前说过,DataFrame是有style属性的,所以在没有做任何修改的情况下,使用df.style应该和上图一样
现在让我们编写一个简单的样式函数,该函数可以将负数变为红色,使正数保持黑色。
def color_negative_red(val):
color = 'red' if val < 0 else 'black'
return 'color: %s' % color
现在来应用这段函数(思考Excel如何实现)
现在如果我们想突出显示每列中的最大值,需要重新定义一个函数
def highlight_max(s):
is_max = s == s.max()
return ['background-color: yellow' if v else '' for v in is_max]
因为之前我们是以元素为单位判断,所以使用的是.applymap,所以现在我们应对列进行.apply操作
现在可以使用
df.style.applymap(color_negative_red).apply(highlight_max)
来混合修改样式或使用.\实现
当然我们也可以通过修改样式函数并使用.apply来高亮整个DataFrame的最大值,
切片
当然我们也可以使用subset通过切片来完成对指定列进行样式修改,比如高亮部分列的最大值
df.style.apply(highlight_max, subset=['B', 'C', 'D'])
对于行和列切片,可以使用我们熟悉的.loc,不过目前仅支持基于标签的切片,不支持位置切片。
格式化输出
我们也可以使用Styler.format来快速格式化输出,比如将小数格式化为百分数
也支持使用字典或lambda表达式来更灵活的使用
当然是支持和之前的样式结合使用
内置样式
开发者们为了尽可能的让作为调包侠的我们使用起来更方便,已经内置了很多写好的样式,拿走就用,比如将空值设置为红色
或是结合seaborn使用热力图
现在我们就可以通过修改Styler.background_gradient来轻松的修改颜色等样式
最后我们可以将数据修改为条形图的样式,这也是我最喜欢的一个功能,能够快速的看出数据的变化!
在最新的版本中可以进一步自定义条形图:我们现在可以将df.style.bar以零或中点值为中心来快速观察数据变化,并可以传递颜色[color_negative, color_positive],比如使用align='mid':
以上就是对Pandas中如何修改样式的一个简单介绍,更多的操作可以在官方文档https://pandas.pydata.org/pandas-docs/stable/user_guide/style.html中找到与学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25