
scrapy一个开源和协作的框架,最初的设计目的为:页面抓取(更准确来说是网络抓取),因此scrapy能够以简便、快捷·、可扩展的方式从网站中提取所需的信息。现阶段scrapy的应用十分广泛,能够用于挖掘、监测和自动化测试等许多领域,也可以被用在API所返回的数据,就像:Amazon Associates Web Services,或者通用的网络爬虫等方面。 scrapy是基于twisted框架而开发出来的,twisted是一个流行的事件驱动的python网络框架,所以通过利用一种非阻塞(又被称为异步)的代码来实现并发。
一、scrapy架构
scrapy框架主要由以下·六大组件组成:调试器(Scheduler)、下载器(Downloader)、爬虫(Spider)、中间件(Middleware)、实体管道(Item Pipeline)和Scrapy引擎(Scrapy Engine)
1、Scrapy Engine(引擎): 主要负责控制所有组件间的数据流,并在相应动作触发事件时进行处理。
2、Scheduler(调度器): 调度器从引擎接受请求,并将这些请求放入队列中,并在之后返回给引擎。
3、Downloader(下载器): 下载器负责根据引擎的请求,获取页面数据并反应给引擎,之后提供给spider。
4、Spider(爬虫): 每一个spider负责处理一个(或一些)特定网站,Spider发出请求,并对引擎返回给它下载器响应数据进行处理,以items和规则内的数据请求(urls)返回给引擎。
5、Item Pipeline(管道): Item Pipeline负责处理被spider提取出来的数据,并将数据持久化。
6、Downloader Middlewares(下载中间件): 下载器中间件是在引擎及下载器之间的交互组件,也被称为特定钩子(specific hook),能够代替接收请求、处理数据的下载, 并将结果提供给引擎。
7、Spider Middlewares(Spider中间件): Spider中间件是在引擎及Spider之间的特定钩子(specific hook),处理spider的输入(response)和输出(items及requests)。 其提供了一个简便的机制,通过插入自定义代码来扩展Scrapy功能。
二、scrapy安装
windows环境配置
scrapy依赖包(或者到官网单独下载各文件安装):
1.lxml: pip install wheel
2.zope.interface:pip install zope.interface-4.3.3-cp35-cp35m-win_amd64.whl
3.pyOpenSSL:pip install pyOpenSSL
4.Twisted:pip install Twisted
5.Scrapy:pip install Scrapy
如果还没安装,Anoconda+Pycharm+Scrapy Anaconda,先到http://www.continuum.io/downloads下载对应平台的包安装。如果已经安装,直接通过conda命令安装Scrapy。conda install scrapy
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08