我们都知道pandas 是一款功能强大的python库,基于Numpy,支持高性能的矩阵运算,通常在数据挖掘和数据分析领域应用较多,但是pandas 数据清洗功能也不能忽视,今天小编就为大家分享pandas是如何检测和处理缺失数据的。
一、缺失值是什么?
缺失值是指粗糙数据中由于缺少信息而造成的数据的聚类、分组、删失或截断。它指的是现有数据集中某个或某些属性的值是不完全的。通常按照数据缺失机制,可分为以下几种:
1.可忽略的缺失
(1)完全随机缺失 MCAR全称:missing completely at random,顾名思义,指的是数据的缺失是随机的,与已观察到的和未观察到的数据无关
(2)随机缺失MAR,全称:missing at random,该类数据的缺失依赖于其他完全变量
2.不可忽略的缺失NIM(全称:non-ignorable missing ) 或者非随机缺失,这种数据的缺失既依赖于完全变量又依赖于不完全变量本身
二、判断是否有缺失值
1.创建数据
import pandas as pd
import numpy as np
data = pd.DataFrame({'a': [1. 2. 4. np.nan,7. 9], 'b': ['a', 'b', np.nan, np.nan, 'd', 'e'], 'c': [np.nan, 0. 4. np.nan, np.nan, 5], 'd': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]})
a b c d
0 1.0 a NaN NaN
1 2.0 b 0.0 NaN
2 4.0 NaN 4.0 NaN
3 NaN NaN NaN NaN
4 7.0 d NaN NaN
5 9.0 e 5.0 NaN
2.判断是否有缺失值及统计
print(data.isnull().any())
a True
b True
c True
d True
print(data.isnull().sum()) #t统计每一列的缺失值个数
a 1
b 2
c 3
d 6
1.删除;
pandas缺失值处理最原始的方法,pandas删除缺失值,通常通过dropna的方法,使用dropna的前提是,缺失值的类型必须是np.nan
删除缺失值为np.nan的所在行
movie.dropna()
参数说明:
axis 参数用于控制行或列,跟其他不一样的是,axis=0 (默认)表示操作行,axis=1 表示操作列。
how 参数可选的值为 any(默认) 或者 all。any 表示一行/列有任意元素为空时即丢弃,all 一行/列所有值都为空时才丢弃。
subset 参数表示删除时只考虑的索引或列名。
thresh参数的类型为整数,它的作用是,比如 thresh=3.会在一行/列中至少有 3 个非空值时将其保留。
2.填充。
最常见的是使用 fillna 完成填充。
data.fillna(0)
除了可以使用标量来填充之外,还可以使用前一个或后一个有效值来填充。
设置参数 method=‘pad’ 或 method=‘ffill’ 可以使用前一个有效值来填充。
设置参数 method=‘bfill’ 或 method=‘backfill’ 可以使用后一个有效值来填充。
3.替换。
有时候,某些异常值也会被当做缺失值来处理,可以使用 replace 方法来替换缺失值。
比如: user_info.replace({“age”: 40. “birth”: pd.Timestamp(“1978-08-08”)}, np.nan) #将年龄40替换 日期为1978-08-08也替换
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19