
直方图你一定知道,那么灰度直方图呢?你了解吗?灰度直方图,顾名思义,就是先统计出来一幅图像中每一个像素出现的次数,之后再把每一个像素出现的次数除以总的像素个数,得到的结果就是这个像素的出现频率,最后再将像素和该像素的出现频率用图表示出来,就是灰度直方图。先简单通俗的介绍了灰度直方图,下面跟随小编一起详细了解一下吧。
一、灰度直方图概念
灰度直方图,是数字图像处理中,一种计算代价非很小,但是非常有用的工具,它概括出了一幅图像的灰度级信息。
灰度直方图是图像灰度级的函数,通常用来描述每个灰度级在图像矩阵中的像素个数或者占有率。灰度直方图横坐标是灰度级,纵坐标表示图像中该灰度级出现的个数(频率)。
一维直方图的结构:
可以将高维直方图理解为图像在每个维度上灰度级分布的直方图。最为常见的是二维直方图,二维中对应每个像素统计个变量。
二·、灰度直方图的性质:
1、灰度直方图只反映图像的灰度分布情况,不能反映图像像素的位置,也就是丢失了像素的位置信息
2、一幅图像对应的灰度直方图是唯一的,但是不同的图像却能够对应相同的直方图
3、将一幅图像分为多个区域,多个区域的直方图之和也就是原图像的直方图
三、创建灰度直方图
<span style="font-size:18px;">#include <iostream> #include "cv.h" #include "highgui.h" #include "cxcore.h" using namespace std; IplImage *DrawHistogram(CvHistogram*hist, float scaleX = 1, float scaleY = 1){ // 画直方图 float histMax = 0; cvGetMinMaxHistValue(hist, 0 , &histMax, 0, 0); // 取得直方图中的最值 IplImage *imgHist = cvCreateImage(cvSize(256 * scaleX, 64*scaleY), 8, 1); cvZero(imgHist); //// 清空随机值 for(int i = 0; i < 255; i++) { float histValue = cvQueryHistValue_1D(hist, i); // 取得直方图中的i值 float nextValue = cvQueryHistValue_1D(hist, i+1); int numPt = 5; CvPoint pt[5]; pt[0] = cvPoint(i*scaleX, 64*scaleY); pt[1] = cvPoint((i+1)*scaleX, 64*scaleY); pt[2] = cvPoint((i+1)*scaleX, (1 -(nextValue/histMax))* 64 * scaleY); pt[3] = cvPoint((i+1)*scaleX, (1 -(histValue/histMax))* 64 * scaleY); pt[4] = cvPoint(i*scaleX, 64*scaleY); cvFillConvexPoly(imgHist, pt, numPt, cvScalarAll(255)); } return imgHist; } int main() { IplImage *img = cvLoadImage("F:\\tongtong.jpg",1); if(!img){ cout << "No data img" << endl; } int dims = 1; int sizes = 256; float range[] = {0,255}; float*ranges[]={range}; CvHistogram *hist = cvCreateHist(dims, &sizes, CV_HIST_ARRAY, ranges, 1); cvClearHist(hist); //清除直方图里面的随机值 IplImage *imgBlue = cvCreateImage(cvGetSize(img), 8, 1); IplImage *imgGreen = cvCreateImage(cvGetSize(img), 8, 1); IplImage *imgRed = cvCreateImage(cvGetSize(img), 8, 1); cvSplit(img, imgBlue, imgGreen, imgRed, NULL); //将多通道图像分解 cvCalcHist(&imgBlue, hist, 0, 0); // 计算图像的直方图 IplImage *histBlue = DrawHistogram(hist); // 将直方图中的数据画出来 cvClearHist(hist); cvCalcHist(&imgGreen, hist, 0, 0); IplImage *histGreen = DrawHistogram(hist); cvClearHist(hist); cvCalcHist(&imgRed, hist, 0, 0); IplImage *histRed = DrawHistogram(hist); cvClearHist(hist); cvNamedWindow("show",0); cvNamedWindow("B", 0); cvNamedWindow("G", 0); cvNamedWindow("R", 0); cvShowImage("show",img); cvShowImage("B",histBlue); cvShowImage("G",histGreen); cvShowImage("R", histRed); cvWaitKey(0); cvReleaseImage(&img); cvDestroyWindow("show"); cvReleaseImage(&histBlue); cvDestroyWindow("B"); cvReleaseImage(&histGreen); cvDestroyWindow("G"); cvReleaseImage(&histRed); cvDestroyWindow("R"); return 0; }</span>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30