CDA数据分析师 出品
作者:Mika
数据:真达
后期:泽龙
【导读】今天我们用数据来聊一聊新一线城市。
Show me data,用数据说话
今天我们聊一聊 新一线城市
提到一线城市,大家马上会想到北上广深这四个超级大都市。除此之外,近年来新一线城市这个概念也越来越被大众所熟知。
2013年,财经媒体第一财经提出了提出“新一线城市”的概念,以商业资源集聚度、城市枢纽性、城市人活跃度、生活方式多样性以及未来可塑性作为评判的五大指标,针对全国几百个地级市进行了全新的排名,将未来最有潜力晋升传统一线城市的15个城市称为“新一线城市”。
作为距离一线城市最近的梯队,新一线城市的榜单可以说含金量十足,每年的评选都备受关注。
(来自维基百科)
2020年15座新一线城市包括成都、重庆、杭州、武汉、西安、天津、苏州、南京、郑州、长沙、东莞、沈阳、青岛、合肥、佛山。
(来自21世纪报道)
其中在人口增量方面:西安由于大幅降低落户门槛,且将西咸新区人口纳入人口总数后,在近3年以新增128.87万常住人口,排名15个新一线城市常住人口增量第一位。常住人口增量连年提升的杭州,则以近3年117.2万的增量,排名新一线城市第二位。
和它们相比,天津近3年以来出现常住人口-0.29万的增长,沈阳3年增长了3万,势头微弱。
那么这15座新一线城市
近20年来的GDP变化趋势如何?
人口竞争力如何排座次?
房价又是怎样的?
今天我们就来用数据全面解读这15座城市。
这次我们使用Python的动态可视化库plotly,对这15座城市从2000年到2019年这20年的GDP、人口以及房价数据进行了可视化。下面就让我们来一起看看吧!
我们的数据从以下四个维度展开:
01 数据获取
我们使用Python的可视化库Plotly对15座新一线城市的人口/GDP/房价数据进行动态可视化展示。plotly是一个基于javascript的绘图库,绘图种类丰富,效果美观,使用Plotly可以画出很多媲美Tableau的高质量图。
如果你没有安装plotly,可以使用以下代码进行pip安装:
pip install plotly -i https://pypi.tuna.tsinghua.edu.cn/simple
首先导入我们需要使用的包,其中pandas用于数据整理,plotly用于数据可视化。
# 导入包 import pandas as pd import plotly as py import plotly.graph_objs as go import plotly.express as px from plotly import tools
使用pandas读入并合并数据集,我们选取的数据来自于国家统计局网站,该数据包含了15座新一线城市自2000年~2019年20年期间的GDP和人口数据,这是一份带有时间序列的面板数据,适合进行动态可视化绘图使用。
# 读入数据 df_gdp = pd.read_excel('../data/新一线城市人口和GDP.xlsx', sheet_name=0) df_pop = pd.read_excel('../data/新一线城市人口和GDP.xlsx', sheet_name=1) # 合并数据 df_all = pd.merge(left=df_gdp, right=df_pop, on=['城市', '年份']) df_all = df_all.sort_values(['城市','年份']) df_all.head()
02 数据可视化
Plotly有两个很常用的绘图模块,分别是graph_objs和express,此次我们主要使用express进行动态可视化图形的绘制,使用它可以轻松绘制如散点图、条形图、漏斗图、桑基图等图形。
使用官网:
https://plotly.com/python/plotly-express/
绘图的步骤也非常简单:
接下来我们演示使用plotly.express绘制动态条形图和散点图。
首先绘制一个动态条形图,用于展示15座城市随时间走势的GDP变化趋势,调用bar的方法即可。
绘图主要参数解释:
# 条形图 fig2 = px.bar(df_all, x='城市', y='GDP', color='城市', text='GDP', title='新一线城市近20年GDP变化趋势', range_y=[300, 25000], animation_frame='年份', ) fig2.update_layout(yaxis_title='GDP(亿元)') # 更新布局配置 py.offline.plot(fig2, filename='2000-2019年GDP变化趋势.html')
然后绘制一个动态散点图,用于展示15座城市随时间走势的GDP和人口变化趋势,调用scatter的方法即可。绘图步骤和上述类似。
# 散点图 fig3 = px.scatter(df_all, x='GDP', y='人口', animation_frame='年份', animation_group='城市', size='人口', color='城市', hover_name='城市', size_max=50, text='城市', range_x=[300, 25000], range_y=[150, 4000], title='新一线城市近20年GDP和人口变化趋势', ) fig3.update_layout(xaxis_title='GDP(亿元)', yaxis_title='人口(万人)') py.offline.plot(fig3, filename='2000-2019年GDP和人口变化趋势.html')
03 可视化效果
想要获取具体的数据代码和可视化效果图,可以给小编留言或者私信哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19