
最小二乘法,相信大家都不陌生,统计学中很是常见,而且其理论相对简单,用途也很广泛。今天小编就给大家具体介绍一下最小二乘法。
一、最小二乘概念
最小二乘,或者也可以叫做最小平方和,它目的就是通过最小化误差的平方和,使得拟合对象无限接近目标对象。也就意味着,最小二乘法可以用于对函数的拟合。
最小二乘法是勒让德( A. M. Legendre)于1805年在其著作《计算慧星轨道的新方法》中提出的。
在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线的欧氏距离之和最小。更直观的解释:
假设有一条直线y=ax+b,要在这条直线上找到一点,距离(x0.y0)这个点的距离最短。如果用绝对值的方法寻找,也就是取min(|y−y0|+|x−x0|),由于绝对值最小为0.所以最小的情况就是x=x0或者y=y0处。
如果用平方和的方法寻找,就是取min(y−y0)2+(x−x0)2.可以看出该式是两点间距离公式,也就是距离的概念。那么最短的距离,就是点到直线的垂线。
二、最小二乘核心思想
最小二乘的主要思想就是求解未知参数,使得理论值与观测值之差(即误差,或者说残差)的平方和达到最小:
三、直线拟合/多元线性回归
求导计算最小值是通用解法,但矩阵法比代数法要简洁,且矩阵运算可以取代循环,所以现在很多书和机器学习库都是用的矩阵法来做最小二乘法。
故损失函数定义为:(系数1/2是为了简化计算添加的,求迹前和求迹后值不变)
应用矩阵迹的计算公式:
四、最小二乘法的适用场景
当样本量m很少,小于特征数n的时候,这时拟合方程是欠定的,需要使用LASSO。当m=n时,用方程组求解。当m>n时,拟合方程是超定的,可以使用最小二乘法。
但是同时最小二乘也具有局限性:
1.最小二乘法需要计算(XTX)−1逆矩阵,有可能逆矩阵不存在,这样就没有办法直接用最小二乘法。
2.如果是样本特征n非常的大的情况,计算逆矩阵是一个极为耗时的工作,甚至是不可行,通常不超过10000个特征。
3.若拟合函数不是线性的,则无法使用最小二乘法,这时就需要通过一些技巧转化为线性才能使用。
五、最小二乘实现
/* 最小二乘法的实现 C++版 命令行输入数据文件 最后输入x得到预测的y值 */ #include<iostream> #include<fstream> #include<vector> using namespace std; class LeastSquare { double b0, b1; public: LeastSquare(const vector<double>& x, const vector<double>& y) { double t1 = 0, t2 = 0, t3 = 0, t4 = 0; for (int i = 0; i<x.size(); ++i) { t1 += x[i] * x[i]; t2 += x[i]; t3 += x[i] * y[i]; t4 += y[i]; } b0 = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2); // 求得 B0 b1 = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2); // 求得 B1 } double getY(const double x) const { return b0+b1*x; } void print() const { if (b1>=0) cout << "y = " << b0 << "+" << b1 << 'x' << "\n"; else cout << "y = " << b0 << "" << b1 << 'x' << "\n"; } }; int main(int argc, char *argv[]) { if (argc != 2) { cout << " data.txt don't exit " << endl; return -1; } else { vector<double> x; vector<double> y; int count = 1; ifstream in(argv[1]); for (double d; in >> d; count++) if (count % 2 == 1) x.push_back(d); else y.push_back(d); LeastSquare ls(x, y); ls.print(); cout << "Input x:\n"; double x0; while (cin >> x0) { cout << "y = " << ls.getY(x0) << endl; cout << "Input x:\n"; } } int endline; cin >> endline; }
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
全球第一!上交AI智能体炼成Kaggle特级大师登顶OpenAI MLE-bench 编辑:KingHZ 好困 【新智元导读】刚刚,由上海交通大学人 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24