最小二乘法,相信大家都不陌生,统计学中很是常见,而且其理论相对简单,用途也很广泛。今天小编就给大家具体介绍一下最小二乘法。
一、最小二乘概念
最小二乘,或者也可以叫做最小平方和,它目的就是通过最小化误差的平方和,使得拟合对象无限接近目标对象。也就意味着,最小二乘法可以用于对函数的拟合。
最小二乘法是勒让德( A. M. Legendre)于1805年在其著作《计算慧星轨道的新方法》中提出的。
在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线的欧氏距离之和最小。更直观的解释:
假设有一条直线y=ax+b,要在这条直线上找到一点,距离(x0.y0)这个点的距离最短。如果用绝对值的方法寻找,也就是取min(|y−y0|+|x−x0|),由于绝对值最小为0.所以最小的情况就是x=x0或者y=y0处。
如果用平方和的方法寻找,就是取min(y−y0)2+(x−x0)2.可以看出该式是两点间距离公式,也就是距离的概念。那么最短的距离,就是点到直线的垂线。
二、最小二乘核心思想
最小二乘的主要思想就是求解未知参数,使得理论值与观测值之差(即误差,或者说残差)的平方和达到最小:
三、直线拟合/多元线性回归
求导计算最小值是通用解法,但矩阵法比代数法要简洁,且矩阵运算可以取代循环,所以现在很多书和机器学习库都是用的矩阵法来做最小二乘法。
故损失函数定义为:(系数1/2是为了简化计算添加的,求迹前和求迹后值不变)
应用矩阵迹的计算公式:
四、最小二乘法的适用场景
当样本量m很少,小于特征数n的时候,这时拟合方程是欠定的,需要使用LASSO。当m=n时,用方程组求解。当m>n时,拟合方程是超定的,可以使用最小二乘法。
但是同时最小二乘也具有局限性:
1.最小二乘法需要计算(XTX)−1逆矩阵,有可能逆矩阵不存在,这样就没有办法直接用最小二乘法。
2.如果是样本特征n非常的大的情况,计算逆矩阵是一个极为耗时的工作,甚至是不可行,通常不超过10000个特征。
3.若拟合函数不是线性的,则无法使用最小二乘法,这时就需要通过一些技巧转化为线性才能使用。
五、最小二乘实现
/* 最小二乘法的实现 C++版 命令行输入数据文件 最后输入x得到预测的y值 */ #include<iostream> #include<fstream> #include<vector> using namespace std; class LeastSquare { double b0, b1; public: LeastSquare(const vector<double>& x, const vector<double>& y) { double t1 = 0, t2 = 0, t3 = 0, t4 = 0; for (int i = 0; i<x.size(); ++i) { t1 += x[i] * x[i]; t2 += x[i]; t3 += x[i] * y[i]; t4 += y[i]; } b0 = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2); // 求得 B0 b1 = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2); // 求得 B1 } double getY(const double x) const { return b0+b1*x; } void print() const { if (b1>=0) cout << "y = " << b0 << "+" << b1 << 'x' << "\n"; else cout << "y = " << b0 << "" << b1 << 'x' << "\n"; } }; int main(int argc, char *argv[]) { if (argc != 2) { cout << " data.txt don't exit " << endl; return -1; } else { vector<double> x; vector<double> y; int count = 1; ifstream in(argv[1]); for (double d; in >> d; count++) if (count % 2 == 1) x.push_back(d); else y.push_back(d); LeastSquare ls(x, y); ls.print(); cout << "Input x:\n"; double x0; while (cin >> x0) { cout << "y = " << ls.getY(x0) << endl; cout << "Input x:\n"; } } int endline; cin >> endline; }
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-25在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口 ...
2025-02-25春风拂面,金三银四的求职季如期而至。谁都想在这场竞争里拿下心仪offer。 一份亮眼简历是求职敲门砖,面试紧张则可能让机会溜 ...
2025-02-24