文章来源: 早起Python微信公众号
作者:陈熹
在我们写爬虫的过程中,目标网站常见的干扰手段就是设置验证码等,本就将基于Selenium实战讲解如何处理弹窗和验证码,爬取的目标网站为某仪器预约平台
可以看到登录所需的验证码构成比较简单,是彩色的标准数字配合简单的背景干扰
因此这里的验证码识别不需要借助人工智能的手段,可直接利用二值法对图片处理后交给谷歌的识别引擎tesseract-OCR即可获得图中的数字。
注:selenium 和 tesseract 的配置读者可自行搜索,本文不做介绍)
首先导入所需模块
import re # 图片处理 from PIL import Image # 文字识别 import pytesseract # 浏览器自动化 from selenium import webdriver import time
先尝试打开示例网站
url = 'http://lims.gzzoc.com/client' driver = webdriver.Chrome() driver.get(url) time.sleep(30)
有趣的地方出现了,网站显示了一个我们前面没有看到的弹窗,简单说一下弹窗的知识点,初学者可以将弹出框简单分为alert和非alert
alert式弹出框
alert(message)方法用于显示带有一条指定消息和一个 OK 按钮的警告框
confirm(message)方法用于显示一个带有指定消息和 OK 及取消按钮的对话框
prompt(text,defaultText)方法用于显示可提示用户进行输入的对话框
看一下这个弹出框的js是怎么写的:
看起来似乎是alert式弹出框,那么直接用driver.switch_to.alert吗?先不急
非传统alert式弹出框的处理
弹出框位于div层,跟平常定位方法一样
弹出框是嵌套的iframe层,需要切换iframe
弹出框位于嵌套的handle,需要切换窗口
所以我们对这个弹出框进行元素审查
所以问题实际上很简单,直接定位按钮并点击即可
url = 'http://lims.gzzoc.com/client' driver = webdriver.Chrome() driver.get(url) time.sleep(1) driver.maximize_window() # 最大化窗口 driver.find_element_by_xpath("//div[@class='jconfirm-buttons']/button").click()
二值法处理验证码的简单思路如下:
切割截取验证码所在的图片
转为灰度后二值法将有效信息转为黑,背景和干扰转为白色
处理后的图片交给文字识别引擎
输入返回的结果并提交
切割截取验证码的图片进一步思考解决策略:首先获取网页上图片的css属性,根据size和location算出图片的坐标;然后截屏;最后用这个坐标进一步去处理截屏即可(由于验证码js的特殊性,不能简单获取img的href后下载图片后读取识别,会导致前后不匹配)
img = driver.find_element_by_xpath('//img[@id="valiCode"]') time.sleep(1) location = img.location size = img.size # left = location['x'] # top = location['y'] # right = left + size['width'] # bottom = top + size['height'] left = 2 * location['x'] top = 2 * location['y'] right = left + 2 * size['width'] - 10 bottom = top + 2 * size['height'] - 10 driver.save_screenshot('valicode.png') page_snap_obj = Image.open('valicode.png') image_obj = page_snap_obj.crop((left, top, right, bottom)) image_obj.show()
正常情况下直接使用注释的四行代码即可,但不同的电脑不同的浏览器,缩放倍率存在差异,因此如果截取出的图存在偏差这需要考虑乘上倍率系数。最后可以再加减数值进行微调
可以看到图片这成功截取出来了!
这个阈值需要具体用Photoshop或者其他工具尝试,即找到一个像素阈值能够将灰度图片中真实数据和背景干扰分开,本例经测试阈值为205
img = image_obj.convert("L") # 转灰度图 pixdata = img.load() w, h = img.size threshold = 205 # 遍历所有像素,大于阈值的为黑色 for y in range(h): for x in range(w): if pixdata[x, y] < threshold: pixdata[x, y] = 0 else: pixdata[x, y] = 255
根据像素二值结果重新生成图片
data = img.getdata() w, h = img.size black_point = 0 for x in range(1, w - 1): for y in range(1, h - 1): mid_pixel = data[w * y + x] if mid_pixel < 50: top_pixel = data[w * (y - 1) + x] left_pixel = data[w * y + (x - 1)] down_pixel = data[w * (y + 1) + x] right_pixel = data[w * y + (x + 1)] if top_pixel < 10: black_point += 1 if left_pixel < 10: black_point += 1 if down_pixel < 10: black_point += 1 if right_pixel < 10: black_point += 1 if black_point < 1: img.putpixel((x, y), 255) black_point = 0 img.show()
图像处理前后对比如下
将处理后的图片就给谷歌的文字识别引擎就能完成识别
result = pytesseract.image_to_string(img) # 可能存在异常符号,用正则提取其中的数字 regex = '\d+' result = ''.join(re.findall(regex, result)) print(result)
识别结果如下
在处理完验证码之后,现在我们就可以向网站提交账号密码、验证码等登陆所需信息
driver.find_element_by_name('code').send_keys(result) driver.find_element_by_name('userName').send_keys('xxx') driver.find_element_by_name('password').send_keys('xxx') # 最后点击确定 driver.find_element_by_xpath("//div[@class='form-group login-input'][3]").click()
需要注意的是,二值法识别验证码成功率不是100%,因此需要考虑到验证码识别错误,需要单击图片更换验证码重新识别,可以将上述代码拆解成多个函数后,用如下循环框架试错
while True: try: ... break except: driver.find_element_by_id('valiCode').click()
为了方便理解,代码的书写没有以函数形式呈现,欢迎读者自行尝试修改!
成功登录后就可以获得个人的cookies,接下来可以继续用selenium进行浏览器自动化或者把cookies传给requests,后面就能爬取需要的信息做分析或者实现一些自动化功能,但由于涉及到的爬虫知识点比较多,我们会在后续的爬虫专题文章中进行分享!
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20