作者:Mika
数据:真达
后期:泽龙
【导读】
随着自热食品越来越备受消费者的追捧,各种自热小火锅、自热米饭也成了妥妥的网红食品。我们今天就来聊一聊自热食品。
python技术部分请直接看第三部分。
Show me data,用数据说话
今天我们聊一聊 自热食品
疫情期间,在宅在家里的日子,主打一人食概念的自热食品备受关注。自热火锅、自热米饭、即食酸辣粉、即食螺蛳粉等方便食品的销量迎来大幅度增长。光是今年春节,自热火锅的销售暴涨就惊起讨论无数。
自热火锅,自热米饭们就这么成为了新的网红食品,持续霸占着电商销售量榜首,你吃过自热火锅吗?哪款自热食品卖得最好?今天我们就带你用数据来解读这些自热食品。
01“万物皆可自热”
自热食品就这么火了
随着自热食品越来越备受消费者的追捧,各种自热小火锅、自热米饭也成了妥妥的网红食品。一时间,各种自热食品品牌如雨后春笋涌出。自热食品的市场规模也逐年扩大,预计今年将达到40亿元。
来源:《自热食品网络关注度分析报告》—微热点大数据研究院
超市里曾经被泡面牢牢占据的方便食品货架,迅速被自热火锅、自热米饭、自热面抢走半壁江山。
目前自热食品的入局企业不仅有传统的火锅巨头,如海底捞、小龙坎;还有像三只松鼠、良品铺子等零食厂商;同时还有像自嗨锅莫小仙等主打速食品类的新兴品牌。
根据莫小仙的数据,在疫情期间的整体销量同比增长近400%。而自嗨锅3月份公布的数据显示,其线上订单量在疫情期间增长了200%-300%。
其实像外卖、速冻、泡面和眼下潮头上的各种自热锅,本质都是“懒人经济”。同样是方便食品,泡个面还得烧水,速冻食品还得开火加热,而自热锅多方便,比起方便面自热锅在选择上好歹有肉有菜有饭有面,选择上略胜一筹。
02全网哪款自热火锅卖得最好?
我们使用Python获取了淘宝网自热食品相关的商品销售数据,共有4403条数据。
自热食品品类月销量
首先我们看看自热食品都有哪些类别。我们可以看到,卖得最好的是各种自热火锅,以超过190多万的月销量一骑绝尘。排在第二位的是自热米饭,销售量超过64万。排在后面的还有自热方便面、自热粉丝、自热烧烤等等。
哪款自热食品卖的最好?
那么都是哪些自热食品卖得最好呢?下面看到产品月销量排名top10。排在前三位的月销量都超过了12万,分别是椒吱自热小火锅、阿宽自热米饭和辣味客重庆自热小火锅。
自热食品店铺销量排行
都是哪些店铺占据着自热食品销量的前列呢?
通过分析我们发现,卖的做多的是天猫超市。那么具体的店铺方面,前三位分别是莫小仙、自嗨锅以及川蜀老味道。辣味客、白家陈记等店紧随其后。
自热食品标题词云
整理自热食物的标题后我们发现:“即时”、“速食”、“自热”、“懒人”等词都常常出现,果然是懒人经济,就是讲究个方便和快速,让你撕开包装,不需过多的操作就能吃上。类别上主要集中在“火锅”、“米饭”、“麻辣烫”、“面类”等。
自热食品店铺地区分布
这些自热食品的店铺都分布在哪些地区呢?从销量靠前的商品我们也可以猜到,这方面四川绝对是霸主,全网的自热食品店铺数量排名中,四川以1140家店铺称霸。
其次广东和上海分别以1007和1002家店位居二三。
自热食品都卖多少钱?
再看到自热食品的价格,可以看到30元以下的超过了半数,占比62.78%。这也是大众普遍能接受的价格,价格再高的话还不如点份外卖了。
03教你用Python分析
全网自热食品数据
我们使用Python获取了淘宝网自热食品相关的商品销售数据,进行了以下数据分析。
1数据读入
首先导入所需包:
# 导入包 import numpy as np import pandas as pd import time import jieba import os from pyecharts.charts import Bar, Line, Pie, Map, Page from pyecharts import options as opts import stylecloud from IPython.display import Image
使用循环读入数据集,查看一下数据集大小,可以看到一共有4403条数据。
file_list = os.listdir('../data/') df_all = pd.DataFrame() # 循环读入 for file in file_list: df_one = pd.read_excel(f'../data/{file}') df_all = df_all.append(df_one, ignore_index=True) print(df_all.shape)
(13984, 6)
预览一下数据。
df_all.head()
2数据预处理
我们对数据集进行以下处理,以便我们后续的可视化分析工作,经过处理之后的数据共8418条。
# 去除重复值 df_all.drop_duplicates(inplace=True) # 删除购买人数为空的记录 df_all = df_all[df_all['purchase_num'].str.contains('人付款')] # 重置索引 df_all = df_all.reset_index(drop=True) df_all.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 8418 entries, 0 to 8417 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 category 8418 non-null object 1 goods_name 8418 non-null object 2 shop_name 8418 non-null object 3 price 8418 non-null float64 4 purchase_num 8418 non-null object 5 location 8418 non-null object dtypes: float64(1), object(5) memory usage: 394.7+ KB
# 提取数值 df_all['num'] = df_all['purchase_num'].str.extract('(\d+)').astype('int') # 提取单位 df_all['unit'] = df_all.purchase_num.str.extract(r'(万)') df_all['unit'] = df_all.unit.replace('万', 10000).replace(np.nan, 1) # 重新计算销量 df_all['true_purchase'] = df_all['num'] * df_all['unit'] # 删除列 df_all = df_all.drop(['purchase_num', 'num', 'unit'], axis=1) # 计算销售额 df_all['sales_volume'] = df_all['price'] * df_all['true_purchase'] # location df_all['province'] = df_all['location'].str.split(' ').str[0] df_all.head()
此部分部分主要对以下的维度数据进行汇总和可视化分析,以下展示关键部分:
cat_num = df_all.groupby('category')['true_purchase'].sum() cat_num = cat_num.sort_values(ascending=False) # 条形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(cat_num.index.tolist()) bar1.add_yaxis('', cat_num.values.tolist()) bar1.set_global_opts(title_opts=opts.TitleOpts(title='自热食品细分品类月销量表现'), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=0)), visualmap_opts=opts.VisualMapOpts(max_=1960179.0) ) bar1.render()
shop_top10 = df_all.groupby('shop_name')['true_purchase'].sum().sort_values(ascending=False).head(10) shop_top10.sort_values(inplace=True) # 条形图 bar2 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar2.add_xaxis(shop_top10.index.tolist()) bar2.add_yaxis('', shop_top10.values.tolist()) bar2.set_global_opts(title_opts=opts.TitleOpts(title='自热食品各店铺月销量排行Top10'), ) bar2.set_series_opts(label_opts=opts.LabelOpts(position='right')) bar2.set_colors(['#50A3BA']) bar2.reversal_axis() bar2.render()
province_top10 = df_all.province.value_counts()[:10] # 条形图 bar3 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar3.add_xaxis(province_top10.index.tolist()) bar3.add_yaxis('', province_top10.values.tolist()) bar3.set_global_opts(title_opts=opts.TitleOpts(title='各省份自热食品店铺数量排行Top10'), visualmap_opts=opts.VisualMapOpts(max_=1140) ) bar3.render()
province_num = df_all.groupby('province')['true_purchase'].sum().sort_values(ascending=False) # 地图 map1 = Map(init_opts=opts.InitOpts(width='1350px', height='750px')) map1.add("", [list(z) for z in zip(province_num.index.tolist(), province_num.values.tolist())], maptype='china' ) map1.set_global_opts(title_opts=opts.TitleOpts(title='全国自热食品店铺月销量分布'), visualmap_opts=opts.VisualMapOpts(max_=500000), ) map1.render()
# 分箱 bins = [0,30,50,100,150,200,500,1000,9999] labels = ['0-30元', '30~50元', '50-100元', '100-150元', '150-200元', '200-500元', '500-1000元', '1000-8800'] df_all['price_cut'] = pd.cut(df_all.price, bins=bins, labels=labels, include_lowest=True) price_num = df_all['price_cut'].value_counts() # 数据对 data_pair2 = [list(z) for z in zip(price_num.index.tolist(), price_num.values.tolist())] # 绘制饼图 pie2 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie2.add('', data_pair2, radius=['35%', '60%']) pie2.set_global_opts(title_opts=opts.TitleOpts(title='自热食品都卖多少钱?'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%')) pie2.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:\n{d}%")) pie2.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF']) pie2.render()
结语:
最后在说道自热食品,虽然说宅家时,打开包装稍等一会儿就能吃上热腾腾的小火锅或米饭,真的是太方便了。但是同时,关于自热食品安全隐患的消息也频出,在食物的种类和口感上更是比不上自己做的或外面吃的新鲜食材了。对自热食品你是怎么看的呢?欢迎留言告诉我们哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03