今天跟大家介绍的是SVM算法原理以及实现,废话不多说,直接来看干货吧!
一、SVM概念
SVM的全称为Support Vector Machine,也就是我们经常提到的支持向量机,主要被用来解决模式识别领域中的数据分类问题,是一种有监督学习算法。
具体解释一下:
Support Vector,支持向量,指的是训练样本集中的某些训练点,这些训练点非常靠近分类决策面,因此是最难分类的数据点。SVM中最优分类标准为:这些点与分类超平面之间的距离达到最大值;
Machine“机”,指的是机器学习领域对一些算法的统称,通常我们把算法看做一个机器或学习函数。SVM是一种有监督的学习方法,主要是针对小样本数据的学习、分类和预测。
二、SVM的优点
1、需要的样本数量不是很大,但这并不表示SVM训练样本的绝对量很少,只是说与其他训练分类算法相比,在同样的问题复杂度情况下,SVM对样本的需求相对是较少的。而且SVM引入了核函数,因此即使是高维的样本,SVM也能轻松应对。
2、结构风险最小。这种风险指的是分类器对问题真实模型的逼近,以及问题真实解之间的累积误差。
3、非线性,指的是:SVM非常擅长应付样本数据线性不可分的情况,通常是利用松弛变量(或者叫惩罚变量)以及核函数技术来实现的,这也是SVM的精髓所在。
三、SVM的原理
1.点到超平面的距离公式
超平面的方程也可以写成一下形式:
假设P(x1.x2...xn)为样本的中的一个点,其中xi表示为第个特征变量。那么该点到超平面的距离d就可以用如下公式进行计算:
其中||w||为超平面的2范数,也就是w向量的模长,常数b类似于直线方程中的截距。
2.最大间隔的优化模型
其中y代表数据点的标签,并且其为-1或1.若数据点在平面的正方向(也就是+1类),那么就是一个正数,而如果数据点在平面的负方向的情况下(即-1类),仍然是一个正数,这样就可以保证始终大于0了。我们需要注意,如果w和b等比例放大,d的结果不会改变。令u=y(wTx+b),所有支持向量的u为1.那么其他点的u大于1.我们可以通过调节w和b求到。这样一来,上面的问题可以简化为:
等价替换为:
这是一个有约束条件的优化问题,我们通常会用拉格朗日乘子法来求解。令:
四、python实现
#svm算法的实现 from numpy import* import random from time import* def loadDataSet(fileName):#输出dataArr(m*n),labelArr(1*m)其中m为数据集的个数 dataMat=[];labelMat=[] fr=open(fileName) for line in fr.readlines(): lineArr=line.strip().split('\t')#去除制表符,将数据分开 dataMat.append([float(lineArr[0]),float(lineArr[1])])#数组矩阵 labelMat.append(float(lineArr[2]))#标签 return dataMat,labelMat def selectJrand(i,m):#随机找一个和i不同的j j=i while(j==i): j=int(random.uniform(0,m)) return j def clipAlpha(aj,H,L):#调整大于H或小于L的alpha的值 if aj>H: aj=H if aj<L: aj=L return aj def smoSimple(dataMatIn,classLabels,C,toler,maxIter): dataMatrix=mat(dataMatIn);labelMat=mat(classLabels).transpose()#转置 b=0;m,n=shape(dataMatrix)#m为输入数据的个数,n为输入向量的维数 alpha=mat(zeros((m,1)))#初始化参数,确定m个alpha iter=0#用于计算迭代次数 while (iter<maxIter):#当迭代次数小于最大迭代次数时(外循环) alphaPairsChanged=0#初始化alpha的改变量为0 for i in range(m):#内循环 fXi=float(multiply(alpha,labelMat).T*\ (dataMatrix*dataMatrix[i,:].T))+b#计算f(xi) Ei=fXi-float(labelMat[i])#计算f(xi)与标签之间的误差 if ((labelMat[i]*Ei<-toler)and(alpha[i]<C))or\ ((labelMat[i]*Ei>toler)and(alpha[i]>0)):#如果可以进行优化 j=selectJrand(i,m)#随机选择一个j与i配对 fXj=float(multiply(alpha,labelMat).T*\ (dataMatrix*dataMatrix[j,:].T))+b#计算f(xj) Ej=fXj-float(labelMat[j])#计算j的误差 alphaIold=alpha[i].copy()#保存原来的alpha(i) alphaJold=alpha[j].copy() if(labelMat[i]!=labelMat[j]):#保证alpha在0到c之间 L=max(0,alpha[j]-alpha[i]) H=min(C,C+alpha[j]-alpha[i]) else: L=max(0,alpha[j]+alpha[i]-C) H=min(C,alpha[j]+alpha[i]) if L==H:print('L=H');continue eta=2*dataMatrix[i,:]*dataMatrix[j,:].T-\ dataMatrix[i,:]*dataMatrix[i,:].T-\ dataMatrix[j,:]*dataMatrix[j,:].T if eta>=0:print('eta=0');continue alpha[j]-=labelMat[j]*(Ei-Ej)/eta alpha[j]=clipAlpha(alpha[j],H,L)#调整大于H或小于L的alpha if (abs(alpha[j]-alphaJold)<0.0001): print('j not move enough');continue alpha[i]+=labelMat[j]*labelMat[i]*(alphaJold-alpha[j]) b1=b-Ei-labelMat[i]*(alpha[i]-alphaIold)*\ dataMatrix[i,:]*dataMatrix[i,:].T-\ labelMat[j]*(alpha[j]-alphaJold)*\ dataMatrix[i,:]*dataMatrix[j,:].T#设置b b2=b-Ej-labelMat[i]*(alpha[i]-alphaIold)*\ dataMatrix[i,:]*dataMatrix[i,:].T-\ labelMat[j]*(alpha[j]-alphaJold)*\ dataMatrix[j,:]*dataMatrix[j,:].T if (0<alpha[i])and(C>alpha[j]):b=b1 elif(0<alpha[j])and(C>alpha[j]):b=b2 else:b=(b1+b2)/2 alphaPairsChanged+=1 print('iter:%d i:%d,pairs changed%d'%(iter,i,alphaPairsChanged)) if (alphaPairsChanged==0):iter+=1 else:iter=0 print('iteraction number:%d'%iter) return b,alpha #定义径向基函数 def kernelTrans(X, A, kTup):#定义核转换函数(径向基函数) m,n = shape(X) K = mat(zeros((m,1))) if kTup[0]=='lin': K = X * A.T #线性核K为m*1的矩阵 elif kTup[0]=='rbf': for j in range(m): deltaRow = X[j,:] - A K[j] = deltaRow*deltaRow.T K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab else: raise NameError('Houston We Have a Problem -- \ That Kernel is not recognized') return K class optStruct: def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters self.X = dataMatIn self.labelMat = classLabels self.C = C self.tol = toler self.m = shape(dataMatIn)[0] self.alphas = mat(zeros((self.m,1))) self.b = 0 self.eCache = mat(zeros((self.m,2))) #first column is valid flag self.K = mat(zeros((self.m,self.m))) for i in range(self.m): self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup) def calcEk(oS, k): fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b) Ek = fXk - float(oS.labelMat[k]) return Ek def selectJ(i, oS, Ei): maxK = -1; maxDeltaE = 0; Ej = 0 oS.eCache[i] = [1,Ei] validEcacheList = nonzero(oS.eCache[:,0].A)[0] if (len(validEcacheList)) > 1: for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E if k == i: continue #don't calc for i, waste of time Ek = calcEk(oS, k) deltaE = abs(Ei - Ek) if (deltaE > maxDeltaE): maxK = k; maxDeltaE = deltaE; Ej = Ek return maxK, Ej else: #in this case (first time around) we don't have any valid eCache values j = selectJrand(i, oS.m) Ej = calcEk(oS, j) return j, Ej def updateEk(oS, k):#after any alpha has changed update the new value in the cache Ek = calcEk(oS, k) oS.eCache[k] = [1,Ek] def innerL(i, oS): Ei = calcEk(oS, i) if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)): j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy() if (oS.labelMat[i] != oS.labelMat[j]): L = max(0, oS.alphas[j] - oS.alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) if L==H: print("L==H"); return 0 eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel if eta >= 0: print("eta>=0"); return 0 oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta oS.alphas[j] = clipAlpha(oS.alphas[j],H,L) updateEk(oS, j) #added this for the Ecache if (abs(oS.alphas[j] - alphaJold) < 0.00001): print("j not moving enough"); return 0 oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j] b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j] if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2 else: oS.b = (b1 + b2)/2.0 return 1 else: return 0 #smoP函数用于计算超平的alpha,b def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #完整的Platter SMO oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup) iter = 0#计算循环的次数 entireSet = True; alphaPairsChanged = 0 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): alphaPairsChanged = 0 if entireSet: #go over all for i in range(oS.m): alphaPairsChanged += innerL(i,oS) print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) iter += 1 else:#go over non-bound (railed) alphas nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] for i in nonBoundIs: alphaPairsChanged += innerL(i,oS) print("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) iter += 1 if entireSet: entireSet = False #toggle entire set loop elif (alphaPairsChanged == 0): entireSet = True print("iteration number: %d" % iter) return oS.b,oS.alphas #calcWs用于计算权重值w def calcWs(alphas,dataArr,classLabels):#计算权重W X = mat(dataArr); labelMat = mat(classLabels).transpose() m,n = shape(X) w = zeros((n,1)) for i in range(m): w += multiply(alphas[i]*labelMat[i],X[i,:].T) return w #值得注意的是测试准确与k1和C的取值有关。 def testRbf(k1=1.3):#给定输入参数K1 #测试训练集上的准确率 dataArr,labelArr = loadDataSet('testSetRBF.txt')#导入数据作为训练集 b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important datMat=mat(dataArr); labelMat = mat(labelArr).transpose() svInd=nonzero(alphas.A>0)[0]#找出alphas中大于0的元素的位置 #此处需要说明一下alphas.A的含义 sVs=datMat[svInd] #获取支持向量的矩阵,因为只要alpha中不等于0的元素都是支持向量 labelSV = labelMat[svInd]#支持向量的标签 print("there are %d Support Vectors" % shape(sVs)[0])#输出有多少个支持向量 m,n = shape(datMat)#数据组的矩阵形状表示为有m个数据,数据维数为n errorCount = 0#计算错误的个数 for i in range(m):#开始分类,是函数的核心 kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))#计算原数据集中各元素的核值 predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b#计算预测结果y的值 if sign(predict)!=sign(labelArr[i]): errorCount += 1#利用符号判断类别 ### sign(a)为符号函数:若a>0则输出1,若a<0则输出-1.### print("the training error rate is: %f" % (float(errorCount)/m)) #2、测试测试集上的准确率 dataArr,labelArr = loadDataSet('testSetRBF2.txt') errorCount = 0 datMat=mat(dataArr)#labelMat = mat(labelArr).transpose()此处可以不用 m,n = shape(datMat) for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print("the test error rate is: %f" % (float(errorCount)/m)) def main(): t1=time() dataArr,labelArr=loadDataSet('testSet.txt') b,alphas=smoP(dataArr,labelArr,0.6,0.01,40) ws=calcWs(alphas,dataArr,labelArr) testRbf() t2=time() print("程序所用时间为%ss"%(t2-t1)) if __name__=='__main__': main()
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20