散点图大家都能绘制,平常工作汇报有时也会用散点图让报表看起来更美观。但是,散点图并不是为了展示数据,而是需要数据分析,并利用数据分析的结果推动业务的增长。小编今天跟大家分享的这篇文章就是教大家如何用散点图进行数据分析的,希望对大家有所帮助。
文章来源:林骥微信公众号
作者:林骥
你好,我是林骥。
散点图的用途有很多,我认为它的核心价值,在于应用相关思维,发现变量之间的关系。
散点图就像一扇窗,打开它,并仔细观察,能让我们看见更多有价值的信息。
比如说,假设表格中有 10000 个客户年龄和消费金额的数据:
我们可以计算每一个年龄对应的人均消费金额,比如说,所有 20 岁客户的平均消费金额约为 1383.69 元,然后我们可以画出一张散点图:
从图中可以看出,客户的年龄与人均消费金额有很强的相关性,其中应用了线性回归算法,得到一条拟合的直线,并用公式表示出来, 接近于 1 ,代表算法拟合的效果很好。
接下来,我们看看具体实现的步骤。
首先,导入所需的库,并设置中文字体和定义颜色等。
# 导入所需的库 import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline # 正常显示中文标签 mpl.rcParams['font.sans-serif'] = ['SimHei'] # 自动适应布局 mpl.rcParams.update({'figure.autolayout': True}) # 正常显示负号 mpl.rcParams['axes.unicode_minus'] = False # 禁用科学计数法 pd.set_option('display.float_format', lambda x: '%.2f' % x) # 定义颜色,主色:蓝色,辅助色:灰色,互补色:橙色 c = {'蓝色':'#00589F', '深蓝色':'#003867', '浅蓝色':'#5D9BCF', '灰色':'#999999', '深灰色':'#666666', '浅灰色':'#CCCCCC', '橙色':'#F68F00', '深橙色':'#A05D00', '浅橙色':'#FBC171'}
其次,从 Excel 文件中读取数据,并调用 sklearn 中的算法,得到拟合的直线和评分结果。
# 数据源路径 filepath='./data/客户年龄和消费金额.xlsx' # 读取 Excel文件 df = pd.read_excel(filepath, index_col='客户编号') # 定义画图用的数据:年龄和人均消费金额 df_group = df.groupby('年龄').mean() x = np.array(df_group.index).reshape(-1, 1) y = np.array(df_group.values) # 用管道的方式调用算法,以便把线性回归扩展为多项式回归 poly_reg = Pipeline([ ('ploy', PolynomialFeatures(degree=1)), ('lin_reg', LinearRegression()) ]) # 拟合 poly_reg.fit(x, y) # 斜率 coef = poly_reg.steps[1][1].coef_ # 截距 intercept = poly_reg.steps[1][1].intercept_ # 评分 score = poly_reg.score(x, y)
接下来,开始用「面向对象」的方法进行画图。
# 使用「面向对象」的方法画图,定义图片的大小 fig, ax = plt.subplots(figsize=(8, 6)) # 设置标题 ax.set_title('\n客户每年长一岁,人均消费金额增加' + '%.2f' % coef[0][1] + '元\n', loc='left', size=26, color=c['深灰色']) # 画气泡图 ax.scatter(x, y, color=c['蓝色'], marker='.', s=100, zorder=1) # # 绘制预测线 y2 = poly_reg.predict(x) ax.plot(x, y2, '-', c=c['橙色'], zorder=2) # 隐藏边框 ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) # 隐藏刻度线 ax.tick_params(axis='x', which='major', length=0) ax.tick_params(axis='y', which='major', length=0) ax.set_ylim(15, 65) ax.set_ylim(1000, 5000) # 设置坐标标签字体大小和颜色 ax.tick_params(labelsize=16, colors=c['深灰色']) ax.text(ax.get_xlim()[0]-6, ax.get_ylim()[1], '人\n均\n消\n费\n金\n额', va='top', fontsize=16, color=c['深灰色']) # 设置坐标轴的标题 ax.text(ax.get_xlim()[0]+1, ax.get_ylim()[0]-300, '年龄', ha='left', va='top', fontsize=16, color=c['深灰色']) # 预测 55 岁的人均消费金额 predict = poly_reg.predict([[55]]) # 标注公式 formula = r'$\mathcal{Y} = ' + '%.2f' % coef[0][1] + '\mathcal{X}' + '%+.2f$' % intercept[0] + '\n' + r'$\mathcal{R}^2 = ' + '%.5f$' % score ax.annotate(formula, xy=(55, predict), xytext=(55, predict+500), ha='center', fontsize=12, color=c['深灰色'], arrowprops=dict(arrowstyle='->', color=c['橙色'])) plt.show()
你可以前往 https://github.com/linjiwx/mp 下载数据文件和完整代码。
当业务指标很多的时候,应该挑选什么指标来进行分析,这件事很考验分析者的功力,往往需要对业务有比较深刻的理解。
为什么很多人精通各种工具技术,手上也有很多各种各样的数据,却没有做出让领导满意的图表?
好的图表,就像是给近视的人戴了一副眼镜,让读者以更清楚的方式去理解数据。
好的图表,就像是神奇的催化剂,加快了从数据到决策的过程,让决策者更加快速地掌握有助于做出决策的信息。
好的图表,能把复杂的问题简单化,帮我们更精准地理解业务的现状,甚至预测未来。
我们应该记住,无论多么漂亮的图表,如果不能从中获取有价值的信息,那么也是一张没有「灵魂」的图表。
很多时候,我们面对的问题,并不是没有数据,而是数据太多,却不知道怎么用。
熟悉数据分析的思维,能帮我们找到更重要的数据,排除过多杂乱数据的干扰。
如果把数据分析比作医生看病的过程,那么可以分为以下 4 个阶段:
(1)描述:检查身体,描述指标值是否正常。
(2)诊断:询问病情,找到疾病的产生原因。
(3)预测:分析病情,预测病情的发展趋势。
(4)指导:开出药方,提出有效的治疗建议。
我们要尽可能地理解业务并提供价值,从数据的加工者,转变成故事的讲述者,甚至是问题的解决者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19