在商业分析中,我们经常会遇到以下问题:
不知道如何进行用户行为分析,对用户进行分类?
不知道哪些是重要价值客户,他们能带来什么,应该如何维护?
这时候就需要用到用户行为分析模型也就是我们通常所说的RFM模型了。小编今天就给大家分享一下RFM模型的构建以及应用,希望对大家商业分析有所帮助。
一、RFM模型简介
RFM模型,是根据客户活跃程度以及交易金额的贡献,对客户价值进行细分的一种方法,是客户关系管理中常应用到的一种操作模型。RFM模型从R、F、M、这3个维度来描述客户的价值,下面来具体解释一下R、F、M、这3个维度。
R:上一次消费 (Recency),客户上一次消费的时间,时间越是接近就表示该客户越有价值,对于提供的即时商品或是服务,这些客户是最有可能反应的。
F:消费频率 (Frequency),一段时间之内对产品的消费频次,也就是客户在限定的期间内的购买的次数。通常来说,客户消费频率越高,也就表示该客户忠诚度越高。
M:消费金额 (Monetary),用户的贡献价值,交易金额越高,该客户价值越高。帕雷托法则认为公司80%收入来自20%的客户。
二、RFM模型使用场景
RFM模型3个维度可根据实际需求变化,例如:
R:最近一次登录时间、最近一次发帖时间、最近一次投资时间、最近一次观看时间
F:浏览次数、发帖次数、评论次数
M:充值金额、打赏金额、评论数、点赞数
互动行为:最近一次互动时间、互动频次、用户的互动次数;
直播行为:最近一次观看直播时间、直播观看频次、观看直播累计时长;
内容行为:最近一次观看内容时间、观看内容频次、观看内容字数;
评论行为:最近一次评论时间、评论频次、累计评论次数等等等等。
三、RFM模型搭建
1.计算每个客户的RFM指标。可以利用CRM软件或者BI分析工具计算出每个客户的R,F,M
2.根据实际业务需求,确定具体的R,F,M的度量范围。
3.在RFM表格中添加细分的段号。
因为有R,F,M三个变量,所以我们需要使用三维坐标系来进行展示,X轴表示R,Y 轴表示F,Z轴表示M,坐标系的8个象限分别表示8类用户也就是:重要价值客户、重要保持客户、重要发展客户、重要挽留客户、一般价值客户、一般保持客户、一般发展客户、一般挽留客户,我们可以用如下图形进行描述:
四、简单示例
import pandas as pd import numpy as np import time #todo 读取数据 data = pd.read_csv('RFM_TRAD_FLOW.csv',encoding='gbk') # print(ret) # todo RFM------>R(最近一次消费) #todo 时间与字符串相互转换 data['time'] = data['time'].map(lambda x:time.mktime(time.strptime(x,'%d%b%y:%H:%M:%S'))) # print(data) # todo 分组 groupby_obj = data.groupby(['cumid','type']) # for name,data in groupby_obj: # print(name) # print(data) # todo 取值 R = groupby_obj[['time']].max() # print( # todo 转为透视表 r_trans = pd.pivot_table(R,index='cumid',columns='type',values='time') # print(data_trans) # todo 替换缺失值 有缺失值,替换成最远的值 r_trans[['Special_offer','returned_goods']] = r_trans[['Special_offer','returned_goods']].apply(lambda x:x.replace(np.nan,min(x)),axis = 0) # print(data_trans) r_trans['r_max'] = r_trans.apply(lambda x:sum(x),axis=1) # print(r_trans) # todo RFM------>F(消费频率) # 取值 F =groupby_obj[['transID']].count() # print(F) #转为透视表 f_trans = pd.pivot_table(F,index='cumid',columns='type',values='transID') # print(f_trans) #替换缺失值 f_trans[['Special_offer','returned_goods']]= f_trans[['Special_offer','returned_goods']].fillna(0) # print(f_trans) # f_trans['returned_goods'] = f_trans['returned_goods'].map(lambda x:-x) # print(f_trans) f_trans['f_total'] = f_trans.apply(lambda x:sum(x),axis=1) # print(f_trans) # todo RFM------>M(消费金额) # 取值 M =groupby_obj[['amount']].sum() # print(M) #转为透视表 m_trans = pd.pivot_table(M,index='cumid',columns='type',values='amount') # print(f_trans) #替换缺失值 m_trans[['Special_offer','returned_goods']]= m_trans[['Special_offer','returned_goods']].fillna(0) # print(f_trans) # m_trans['m_total'] = m_trans.apply(lambda x:sum(x),axis=1) # print(m_trans) # 合并 RFM=pd.concat([r_trans["r_max"],f_trans['f_total'],m_trans['m_total']],axis=1) print(RFM) r_score = pd.cut(RFM.r_max,3,labels=[0,1,2]) f_score = pd.cut(RFM.r_max,3,labels=[0,1,2]) m_score = pd.cut(RFM.r_max,3,labels=[0,1,2])
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20