matplotlib是我们经常会用到的一款python绘图库,操作简单,几行代码就能很轻松地画一些或简单或复杂地图形,线图、直方图、功率谱、条形图、错误图、散点图以及费笛卡尔坐标图等都不在话下。今天小编就具体给大家介绍一下matplotlib绘图教程。
一、首先来了解一下matplotlib
1.matplotlib是基于python语言的开源数据绘图包。matplotlib的对象体系严谨而有趣,为我们提供了巨大的发挥空间。在熟悉了核心对象之后,我们可以轻易的定制图像。matplotlib使用numpy进行数组运算,并调用一系列其他的python库来实现硬件交互。
2.matplotlib安装
pip install matplotlib
3.Matplotlib导入
import matplotlib.pyplot as plt#为方便简介为plt
import numpy as np#画图过程中会使用numpy
import pandas as pd#画图过程中会使用pandas
二、matplotlib绘图
import numpy as np import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt %matplotlib inline fig = plt.figure(figsize=(10,8)) #建立一个大小为10*8的画板 ax1 = fig.add_subplot(331) #在画板上添加3*3个画布,位置是第1个 ax2 = fig.add_subplot(3,3,2) ax3 = fig.add_subplot(3,3,3) ax4 = fig.add_subplot(334) ax5 = fig.add_subplot(3,3,5) ax6 = fig.add_subplot(3,3,6) ax7 = fig.add_subplot(3,3,7) ax8 = fig.add_subplot(3,3,8) ax9 = fig.add_subplot(3,3,9) ax1.plot(np.random.randn(10)) _ = ax2.scatter(np.random.randn(10),np.arange(10),color='r') #作散点图 ax3.hist(np.random.randn(20),bins=10,alpha=0.3) #作柱形图 ax4.bar(np.arange(10),np.random.randn(10)) #做直方图 ax5.pie(np.random.randint(1,15,5),explode=[0,0,0.2,0,0]) #作饼形图 x = np.arange(10) y = np.random.randn(10) ax6.plot(x,y,color='green') ax6.bar(x,y,color='k') data = DataFrame(np.random.randn(1000,10), columns=['one','two','three','four','five','six','seven','eight','nine','ten']) data2 = DataFrame(np.random.randint(0,20,(10,2)),columns=['a','b']) data.plot(x='one',y='two',kind='scatter',ax=ax7) #针对DataFrame的一些作图 data2.plot(x='a',y='b',kind='bar',ax=ax8,color='red',legend=False) data2.plot(x='a',y='b',kind='barh',color='m',ax=ax9) #plt.tight_layout() #避免出现叠影 #plt.show()
2.蜡烛图
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.finance as mpf from pandas import Series, DataFrame from matplotlib.pylab import date2num %matplotlib inline plt.rcParams['figure.autolayout'] = True plt.rcParams['figure.figsize'] = 25,6 plt.rcParams['grid.alpha'] = .4 plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = ['SimHei'] fig, ax = plt.subplots(1,1,figsize=(12,5)) mpf.candlestick_ohlc(ax=ax,quotes=data2.values[::3],width=.002,colorup='red',colordown='green') plt.xticks(data2.date[::25],data.date.map(lambda x:x[:5])[::25],rotation=0) ax.twiny().plot(data3.Open) plt.tight_layout();
3.热图
import numpy as np import pandas as pd from pandas import Series, DataFrame import matplotlib.pyplot as plt %matplotlib inline df = DataFrame(np.random.randn(10,10)) fig = plt.figure(figsize=(12,5)) ax = fig.add_subplot(111) axim = ax.imshow(df.values,interpolation='nearest')#cmap=plt.cm.gray_r, #cmap用来显示颜色,可以另行设置 plt.colorbar(axim) plt.show()
以上就是小编今天跟大家分享的matplotlib绘图的一些方法啦,希望对与大家使用matplotlib有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31