“很多公司还在单纯的做第三方数据搜集、分析,以此判定包括年龄、性别等在内的上网人群特征,这种方式有很大的局限性。”悠易互通CEO周文彪近日接受21世纪经济报道记者专访时表示。
数字营销曾踏着互联网的浪潮极大冲击了传统的营销模式,即通过在第三方网站(比如新浪、搜狐等门户)布代码,搜集、分析用户行为,然后针对性投放广告,因此,被视为一种更加精准的推广营销模式。
但在大数据时代,这种模式面临的问题开始暴露。周文彪表示,根据浏览行为做数据分析是一个弱关系,不是强关系,悠易互通也曾做过三年尝试,但去年发现,单纯以第三方数据去分析,数据丰富度不够,想要得到一些用户的深度属性,难度很大,导致广告投放的精准度依然不高。
因此,今年悠易互通推出了“数据银行”,引入品牌商的第一方数据,并通过与第三方数据的匹配,形成新的数字营销模式。
数据银行的核心便是从单纯的对用户行为分析升级为对用户身份的认证,进而进行跟踪分析。同时,在多屏时代,基于身份认证和后端的大数据分析,可以实现跨屏营销。
数据银行思路
“对广告客户的第一方数据和第三方数据整合,是我们做数据银行要最先解决的问题。”悠易互通负责产品的副总裁蒋楠表示。
周文彪介绍说,数据银行的大数据来源主要包括第一方数据(客户网站上布代码搜集数据)、自己的数据(去全网布代码搜集分析的数据)、第三方数据(比如百度淘宝、新浪等)、垂直领域的一些数据供应商。
据了解,悠易互通的数据银行模式首先是将代码布到广告客户的官网和APP上,进行数据搜集分析,比如有1000万个用户点击进入,首先要分析有多少人只是到达首页,多少人进入到产品页,又有多少人转化购买了产品。
周文彪表示,第一方数据非常精准,因为浏览的用户和品牌的关联度很高,不只看过广告,而是有足够的停留时间,这样分析的结果比在第三方平台上分析的数据准确很多。但也有局限性,一般的品牌商自有数据量比较小,对于营销远远不够,所以要结合第三方数据。
在两类数据结合的过程中,悠易互通加入了ID身份认证,既可以激活品牌商的原有客户,同时以此又可以带来增量用户,并形成循环。
周文彪以一家汽车品牌商为例,该品牌商已拥有500万的CRM数据,包括名字、住址、手机号、身份证号以及保养情况等,但最大的问题是这个数据库没有被充分运用起来,一直处于离线状态,无法跟踪这些用户平时在线干什么。
悠易互通则通过对这500万客户的手机号加密,然后去自己的数据库中(同样积累了大量加密手机号)匹配,一旦确定为同一个用户,便会给该用户赋予一个悠易互通的ID。当该ID在其它网站浏览时,便可实时跟踪,并结合CRM离线数据库,了解用户的需求,比如该保养或换机油了,精确地推送给用户。周文彪称,通过这种方式已为该品牌商激活300万用户。
而对于增量用户,周文彪表示,因为这300万用户的全网行为都可分析,便可以总结出这些用户的在线行为特征,然后再去第三方数据库中寻找一批行为特征相似的人群去投放汽车广告,比如面向3000万潜在用户投放,如果有500万用户到4S店试驾或购车,又可以进入数据库,“用300万现有客户去找潜在的客户,这是一个很有效的方法”。
由此,围绕数据银行形成“第一方数据库挖掘——匹配ID——跟踪全网行为——总结特性——寻找类似用户精准投放广告——新数据进入第一方数据库”的循环模式。
跨屏营销场景
百度展示广告事业部产品总监沈昭阳在悠易互通一次发布会上公布的一组数据显示,中国65%的用户拥有电脑、平板、手机甚至更多的设备,他们的行为大量分散在各种设备上。同时他称,PC流量的自然增长速度无法承载产品所需要的增长速度,PC不可能做到流量的翻倍增长,因此只从PC深挖,已经看到了局限性。
多屏时代的用户行为变化必将激发出新的营销模式。周文彪表示,不同的终端拥有不同的ID,以前会认为不同的终端设备后面是不同的人,但在多屏时代,不同设备背后可能是一个人,如果还按照以前的模式投放广告,势必会造成资源浪费,跨屏营销就是要确定用户正在使用哪个屏幕,并且以差异化的方式将相关产品推送到正在使用的屏幕上。
但要实现跨屏营销,背后依然需要大数据的支撑。周文彪称,今年对一群用户的行为数据分析发现,同一个人,阅读行为发生在手机上的频次远远高于PC,而在对汽车、家电信息的获取上,PC端的使用量远远高于移动端。传统模式下,汽车品牌商分析移动端数据时,就会认为该用户是一个阅读用户,而不是一个汽车相关用户,就忽略掉了,但这个人可能就是一个汽车发烧友,只是在其它屏幕上进行相关行为。
解决这一问题,依然是通过统一ID的方式,即通过ID账号实时跟踪用户行为,形成大数据,以此综合分析判断使用多屏的用户属性。悠易互通是百度移动流量仅有的两大DSP合作方之一,百度旗下的音乐、地图等应用均在PC端和移动端实行统一ID账号,悠易互通在与其流量交易平台对接时,该ID信息进入悠易互通平台。
但从目前来看,并非每家大平台都开放这部分数据,因此周文彪称,另一种方式是通过IP号段,在同一IP号段下,即使不同的屏幕也可判断可能是一个人,成功率没有第一种准确,但也能达到60%到70%,在互联网营销领域,这个水平已经很高了。
周文彪称,跨屏时代的数字营销,最大的难点还是技术,对大数据分析能力要求非常高。CDA注册数据分析师协会会员是来自学界、实务界,国内大陆、台湾及国外数据分析和数据挖掘相关领域顶尖的教授、专家、工程师及企业高端人才,名师荟萃,学术浓厚,技术前沿,代表了国内数据分析研究领域的最高水平。CDA数据分析师的就业前景可选择于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研、教育等多个行业和领域。,根据三个不同的等级胜任不同的数据分析工作任务。文章来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21