作者:马立和 高振娇 韩锋
来源:大数据DT(ID:hzdashuju)
内容摘编自《数据库高效优化:架构、规范与SQL技巧》
select table_name,index_name,leaf_blocks,num_rows,clustering_factor from user_indexes where table_name in ('T1','T2'); TABLE_NAME INDEX_NAME LEAF_BLOCKS NUM_ROWS CLUSTERING_FACTOR -------------- -------------- ---------------- ---------- --------------------- T1 SYS_C0025294 6275 3200000 31520 T2 SYS_C0025295 13271 3200000 632615
select * from t2 where id between '3199990' and '3200000'; -------------------------------------------------------------------------------- | Id | Operation | Name |Rows|Bytes |Cost(%CPU)| Time | -------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 6| 390 | 5 (0)|00:00:01| | 1 | TABLE ACCESS BY INDEX ROWID| T2 | 6| 390 | 5 (0)|00:00:01| |* 2 | INDEX RANGE SCAN | SYS_C0025295 | 6| | 3 (0)|00:00:01| -------------------------------------------------------------------------------- Statistics ---------------------------------------------------------- 1 recursive calls 0 db block gets 13 consistent gets 0 physical reads
案例03 规范SQL写法好处多
1. 案例说明select ... from ... where ( ( order_creation_date>= to_date(20120208,'yyyy-mm-dd') and order_creation_date<to_date(20120209,'yyyy-mm-dd') ) or ( send_date>= to_date(20120208,'yyyy-mm-dd') and send_date<to_date(20120209, 'yyyy-mm-dd') ) ) andnvl(a.bd_id,0) = 1 -------------------------------------------------------------------------------- | Id | Operation | Name |Cost (%CPU)| Time |Pstart | Pstop | -------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 2470K(100)| | | | | 1 | SORT GROUP BY | | | | | | | 2 | TABLE ACCESS BY GLOBAL INDEX ROWID | XXXX | 5 (0) | 00:00:01 | ROW L | ROW L | | 3 | NESTED LOOPS | | 2470K (1) | 08:14:11 | | | | 4 | VIEW |VW_NSO_1| 2470K (1) | 08:14:10 | | | | 5 | FILTER | | | | | | | 6 | HASH GROUP BY | | 2470K (1)| 08:14:10 | | | | 7 | TABLE ACCESS BY GLOBAL INDEX ROWID | XXXX | 5 (0)| 00:00:01 | ROW L | ROW L | | 8 | NESTED LOOPS | | 2470K (1)| 08:14:10 | | | | 9 | SORT UNIQUE | | 2340K (2)| 07:48:11 | | | | 10 | PARTITION RANGE ALL | | 2340K (2)| 07:48:11 | 1 | 92 | | 11 | TABLE ACCESS FULL | XXXX | 2340K (2)| 07:48:11 | 1 | 92 | | 12 | INDEX RANGE SCAN | XXXX | 3 (0)| 00:00:01 | | | | 13 | INDEX RANGE SCAN | XXXX | 3 (0)| 00:00:01 | | | --------------------------------------------------------------------------------
select ... from ... where order_creation_date >= to_date(20120208,'yyyy-mm-dd') and order_creation_date<to_date(20120209,'yyyy-mm-dd') union all select ... from ... where send_date>= to_date(20120208,'yyyy-mm-dd') and send_date<to_date(20120209,'yyyy-mm-dd') and nvl(a.bd_id,0) = 5
select ... from ... where ( ( order_creation_date>= to_date(20120208,'yyyymmdd') and order_creation_date<to_date(20120209,'yyyymmdd') ) or ( send_date>= to_date(20120208,'yyyymmdd') and send_date<to_date(20120209,'yyyymmdd') ) ); -------------------------------------------------------------------------------- | Id | Operation | Name | Cost(%CPU)|Time | Pstart | Pstop | -------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 42358 (1)| 00:08:29 | | | | 1 | SORT AGGREGATE | | | | | | | 2 | CONCATENATION | | | | | | | 3 | PARTITION RANGE SINGLE | | 17393 (1)| 00:03:29 | 57 | 57 | |* 4 | TABLE ACCESS FULL | XXXX | 17393 (1)| 00:03:29 | 57 | 57 | |* 5 | TABLE ACCESS BY GLOBAL INDEX ROWID | XXXX | 24966 (1)| 00:05:00 | ROWID | ROWID | |* 6 | INDEX RANGE SCAN | XXXX | 658 (1)| 00:00:08 | | | ---------------------------------------------------------------------------------
select... from xxx a join xxx b on a.order_id = b.lyywzdid left join xxx c on b.gysid = c.gysid whereb.cdate>= to_date('2012-03-31', 'yyyy-mm-dd') – 3 and ... a.send_date>= to_date('2012-03-31', 'yyyy-mm-dd') - 1 and a.send_date<to_date('2012-03-31', 'yyyy-mm-dd'); -------------------------------------------------------------------------------- |Id | Operation |Name | Rows | Bytes | Cost (%CPU) |Pstart|Pstop| -------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | 104 | 9743(1)| | | | 1 | HASH JOIN OUTER | | 1 | 104 | 9743(1)| | | | 2 | TABLE ACCESS BY LOCAL INDEX ROWID | XXXX | 1 | 22 | 0(0)| 1189 | 1189| | 3 | NESTED LOOPS | | 1 | 94 | 9739(1)| | | | 4 | PARTITION RANGE ITERATOR | | 1032 | 74304 | 9739(1)| 123 | 518 | | 5 | TABLE ACCESS FULL | XXXX | 1032 | 74304 | 9739(1)| 123 | 518 | | 6 | PARTITION RANGE SINGLE | | 1 | | 0(0)| 1189 | 1189 | | 7 | INDEX RANGE SCAN | XXXX | 1 | | 0(0)| 1189 | 1189 | | 8 | TABLE ACCESS FULL | XXXX | 183 | 1830 | 3(0)| | | --------------------------------------------------------------------------------
exec dbms_stats.gather_index_stats( ownname=>'xxx', indname=>'xxx', partname=>'PART_xxx', estimate_percent => 10);
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29