只有合适的数据才能获得ROI_数据分析师
应用业务中的很多分析方法,比如下载量跟踪和IAP分析可以为应用开发商带来很好的效果,比如对购买过程,用户早期离开原因,或者使用率不高等的分析,都可以为应用带来足够的收入。
分析还可以在市场资源之间做出对比甚至在创意之间进行对比(比如哪个广告更有效率?)
这可以让开发商们知道哪种市场资源可以给他们的应用带来什么类型的用户以及用户的行为规律。
但是,当你要为产品推广并寻找数据的时候,应该注意哪些呢?
获得足够的数据
如果你的游戏需要靠IAP挣钱,那么就得保证有足够的用户量才能够实现盈利。
如果只有2000次下载,而且你觉得可以了解用户的习惯,那只能说,这个数量是远远不够的。
我曾遇到很多客户说用户或者广告资源都是基于很小的样本群体,这样数据分析得出的结果只能带来灾难。
什么才是你的KPI(关键绩效指标)?
很多的公司都把产品组和营销团队分离开来。产品团队专注于保证游戏质量带来的高参与度,营销人员则专注于为游戏带来最适合的玩家群。
相似的是,当说到数据的时候,你需要知道游戏处于哪个阶段而且要知道可以从什么地方提高。
KPI 1:首次消费时间
当然,理解为什么玩家在你的游戏中进行第一次消费的原因是非常重要的,因为这可以帮助你理解他们喜欢的游戏体验。
比如,如果你知道平均用户周期短于第一次消费的时间,那么你的游戏一定是有问题了。
不过,如何开发游戏并在KPI的基础上进行优化是非常复杂的。
大公司都有10到20人左右的内部分析团队专门对特定的游戏进行分析并找出有针对性的问题。
他们会观察哪个菜单界面需要被修改,如何促进玩家们早一点进行消费,以及用户获取策略等。他们还必须理解特殊游戏的销售盲点并进行优化。
KPI 2: 平均每用户终身收入(即每用户的LTV)
前7天和30天的ARPU非常的重要。这些可以告诉你什么时候才能赚回投入在市场营销和用户获取方面的开支。
了解用户的平均LTV也非常的重要,但“终身”可能是一个很长的时期。玩家们有可能对你的游戏感兴趣长达几个月甚至数年,但你的市场营销开支通常是早期投入较多,所以你需要知道什么时候才能够把钱赚回来。
KPI 3: 一次性用户比例
一次性用户比例(也就是首日保留率)能够很好的体验你的游戏对用户的吸引力。
比如,一次性用户比例达到60%的话,就意味着第二天有60%的玩家会离开你的游戏。
因此,对特定用户离开游戏的时间要足够重视,在不同渠道获取的用户以及现有用户之间做出对比。
找到自己的亮点
优化KPI是非常复杂的工作,没有人能够给你一个通用的优化游戏方案。重要的是要确保能够获得足够多的用户和用户游戏行为的数据。
一旦游戏进行了优化,就需要对游戏中的付费用户进行研究,然后找到这些用户的获取渠道以及他们的消费习惯和原因,争取最大化ROI.
数据分析咨询请扫描二维码
必备的职业技能 统计学基础 - 理解概率、假设检验、回归分析等统计概念。 - 运用统计方法对数据进行分析和解读。 编程能力 - 掌 ...
2024-11-27基础课程 - 统计学基础: 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识。这有助于分析师更好地理解数据背后 ...
2024-11-27数据分析领域涉及众多工具软件,涵盖了从数据处理、分析到可视化的各个方面。在选择适合自己需求的工具时,需要考虑数据规模、分 ...
2024-11-27在数据分析领域,选择合适的工具至关重要。不同的软件适用于不同的需求和技能水平。以下是几款值得考虑的数据分析软件: - Table ...
2024-11-27数据分析中常用的Excel与Python函数公式涵盖了广泛的应用场景。掌握这些基础和高级技巧对于成为一名优秀的数据分析师至关重要。 ...
2024-11-27Python是一种高级编程语言,由荷兰程序员Guido van Rossum于1989年圣诞节期间开始开发,并于1991年首次发布。Python的设计哲学强 ...
2024-11-27课程内容 数学基础: 高等数学、线性代数、概率论与数理统计、微积分等为算法设计和数据分析打下基础。 编程与算法: 掌握 ...
2024-11-27爬虫工程师是互联网时代中至关重要的职业之一,他们的工作内容主要涉及编写和维护网络爬虫程序,进行数据采集与清洗,设计系统架 ...
2024-11-27技能需求 数据管理与建模 - 掌握SQL、HiveQL、Spark SQL等数据库语言,进行复杂数据查询和分析。 - 使用数据建模工具如ER/Studio ...
2024-11-27技术技能 - 编程技能 - 掌握SQL、Python、R语言等编程工具是基本要求,可用于数据提取、清洗和分析。 - 数据分析与建模技能 ...
2024-11-27财务数据分析职业展望 - 需求激增: 随着企业信息化和数字化进程的加速,财务数据产生和积累速度急剧增长,推动了财务数据分析需 ...
2024-11-27技术技能 数学与统计技能:数据分析师需要具备扎实的数学基础,包括统计学、概率论、多变量微积分和线性代数等知识,以帮助理 ...
2024-11-27选择适当的工具和软件 选择恰当的工具对于创建出色的数据分析图表至关重要。Excel提供强大的数据可视化功能,R语言的ggplot2包 ...
2024-11-27初级市场分析师在工作中面临着重要任务之一:评估竞争对手的表现。这项工作不仅有助于描绘行业竞争格局,还能帮助企业发现自身的 ...
2024-11-27基础知识的建立 要想在数据分析领域脱颖而出,首先需要打好坚实的基础。 数据分析的基础知识十分重要,其中包括统计学、概率论、 ...
2024-11-27# 要学习Python数据分析 掌握Python基础知识 - 首先需要掌握Python的基础知识,包括基本语法、数据结构(如列表、元组、字典等) ...
2024-11-27学数据分析能在什么单位工作 数据分析的就业领域概述 数据分析专业毕业生广泛应用于各行各业,包括但不限于以下单位: 政府机关 ...
2024-11-27想学数据分析需要学哪些课程 数据分析学习路径推荐 基础课程: 统计学: 统计学作为数据分析的基石,涵盖概率论、描述性统计、 ...
2024-11-27# 现在什么行业发展前景最好 **人工智能与机器学习** - 人工智能技术快速发展,广泛应用于智能家居、自动驾驶等领域。 - 具备巨 ...
2024-11-27# 未来最有前景的行业 **人工智能与机器学习** - 人工智能被认为是未来最具潜力的行业之一,其应用范围广泛,包括智能家居、医 ...
2024-11-27