数据可视化-信息图背后的心理学_数据分析师
随着数据导向在企业中蔚然成风,数据展示类的信息界面也变得重要起来。
拥有可视化数据和交互式界面的它正成为商业用户手中重要的工具。更重要的是数据类信息界面也在以app的形式融入普通用户的生活,帮助管理日常活动,如预算追踪和健康管理。
那么是什么让数据类信息界面如此诱人?人们内心渴望,而又被数据类界面完美呈现的这些因素是什么?
人们喜欢控制感。可以想象一下如果自己处于一个完全黑暗的环境内。很快你体内的“紧急开关”就将被启动,驱使你去了解周遭情况和了解你可以控制什么。
从进化的角度来理解,让周围环境处于我们掌控中,我们才更可能生存下来。潜意识会基于感知到的可控层级帮助我们堤防各种危险(打还是逃)。
数据类信息界面就给了我们这种控制感。不论是了解花销动态的个人财政数据界面还是帮助企业追踪营销预算的营销数据界面,都是提高你对情况的感知,给你基因内渴求的控制感。
数据可视化""="" width="" 600""="" height="" 435""="">
This Marketo dashboard帮助市场团队对预算保持同步,确保花销可控。
大多数的数据界面使用如下三种策略来建立控制感:
数据可视化""="" width="" 600""="" height="" 215""="">
Calvin and Hobbes by Bill Watterson
在Jakob Nielsen的“Short-Term Memory and Web Usability”一文中,指出人类在短期记忆中不能记住太多信息,特别是多个抽象的感念或者不寻常的数据。他引用的他人研究建议短期记忆的数量不应该超过七个,这些信息存在我们的大脑里面也只有20秒钟。
数据界面就是为了克服短期记忆的难题。通过在一个屏幕用户的眼睛跨度内呈现所有相关数据,减少对短期记忆的依赖。不需记忆任何东西,因为它们都在你眼前。
然而,在大多情况下,数据会多到在一屏之内显示不完。因此数据界面围绕短期记忆的限制做了如下三件事:
为了更好的理解这一点,对比如下两种展示数据的方式:一个表格和一张折线图。
数据可视化""="" width="" 600""="" height="" 141""="">
数据可视化""="" width="" 600""="" height="" 482""="">
记忆折线图中的上下趋势比表格中的准确数字要简单得多
在概览屏中提供了关键数据的快照,减少短期记忆的负担。但用户也可以深入了解如果他们需要特定数据的详细信息。
数据可视化""="" width="" 600""="" height="" 789""="">
The RescueTime的概览提供了关键指标的鸟瞰图,并且可以进一步了解细节。
将信息分解成可消化的小块,可以降低用户的认知负担。将相关的信息放到同一个tab下面,方便用户来分析他们。
数据可视化""="" width="" 600""="" height="" 445""="">
Mint将数据分解成吐下tab:概览,交易,预算,目标,趋势,投资和如何更省。
保持简单!这一原则在商业和现实生活中同样适用。
比如有个库存管理系统。如果使用纸笔,将花费好几个小时来维持同步入库和出库订单的记录(更别提这么做需要的腿脚),有了数字化的数据界面,这些时间可以被大幅衰减。
数据可视化""="" width="" 600""="" height="" 646""="">
Stitch Labs就是这样一个库存管理系统,可以让商家同时监控多个销售渠道的库存。
随着响应式设计的普及,这些数据信息将能够跨设备使用,让用户可以通过台式机、笔记本或其它移动设备访问该数据。
数据可视化""="" width="" 600""="" height="" 198""="">
The FitBit dashboard可以在多个设备上使用。
任何将数据类信息作为关键服务的产品,都需要将以上用户的心理需求牢记在心。用户喜欢控制感,她们的短期记忆很有限,他们喜欢简单的东西。这三个因素应该成为所有数据信息界面设计的基础。了解你们的用户需求,将它们加入你的设计实践中,这样你就能建立完美的数据信息界面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29