大数据时代是相信数据科学还是领导的感觉
即使企业有开发大数据的能力(其实大部分并没有这个能力),他们还总是喜欢使用未经测试的想当然的想法,而非利用数据科学来做决策。视觉分析公司Atheon Analytics的总经理Guy Cuthbert认为,即使是在那些使用数据的公司中,许多仍然会有选择性的支持那些已经被认可的观点,而非真正数据验证的事实,而利用数据本身,只是靠想法制定决策的一种伪装罢了。
最近Actian公司在伦敦参加的一个圆桌会议上,Cuthbert谈到,数据科学涉及到提出假设和检验假设的方法,但他所遇到的大多数商品零售企业都绕过了这两个方法。
他说:我能一口气说出许多零售商的可怕故事,这些故事都有一个共同点,即这些零售商相信客户存在一个特定的行为方式,因为他们在开张的那一天就有人这么告诉他们了。他们从了没有真正质疑过这些说法而去探究真实的情况品类的真实情况、国家中特定地区的情况,或尺码的情况。数不清的案例表明,人们轻信别人告诉他们的东西,但却不去自己探究真正的事实是什么样的。
我们做了很多工作,想要把各种组织从‘想法驱动’改变为‘数据驱动’,让它们开始采用事实和假设的科学方法,而不是‘想当然’。Cuthbert说。
Cuthbert说,自己曾经努力帮助过许多公司,以让它们理解它们的产品的绩效表现,但这些公司都无法被认为具有分析能力。按照他的推测,全球的商业企业中大概只有百分之一甚至是只有千分之一是真正的数据驱动的。
Cuthbert说:我见过大量的依靠直觉运营的企业并不了解原来数据还可以产生决策。我也听过太多高管们滔滔不绝地喷出了各种各样的其实没有什么‘营养’的想法。因此,如果数据绘制者或者数据科学家去做一些事情,去教商人们他们的组织中所蕴含的那些令人着迷数据及背后的事实,他们就会开始自觉地去认识它们了。
然而,让业务揭穿企业中的一些(不真实)的神话并开始接受现实,接受以数据为基础的结论,并非易事。
在我们向人们展示我们的观点时,常遇到一些充满火药味的‘回击’,他们当面指责我们,说我们所说的是彻头彻尾的缪论。Cuthbert说。
另外一个问题是即使公司试图科学地使用数据,他们关注的点也过于聚焦而狭隘。
大多数与我们合作的公司关注已知的东西,他们总是着眼于诸如‘我们希望明年的收入增加6%,让我们确保能搞定6%’之类的东西。Cuthbert说。
他们没有去寻找增长30%或者120%的机会。我们很多工作只是浮于表面,或者展示那些他们其实自己也没有弄懂的一套东西。
不幸的是,尽管技术进步让我们能够非常容易地处理数十亿条数据,但分析本身,却必须依靠与人力完成。
机器缺乏灵感,这是造成机器学习以及其他计算机技术与人类思维鸿沟巨大的现时原因。Cuthbert说,灵感来自于人类懂得如何从数据中找出隐含的信息。
大数据分析公司Actian(之前叫Ingres)的CEO Steve Shine说,一直到现在,为了满足大数据所需要的开发技能,他们拥有一组特定的高预算的客户,这些客户需要他们的这些技能完成项目。
在过去的三四年中,如果你在任何的一个地方接触过hadoop项目,你就会意识到,能够写一个高效的MapReduce程序并使hadoop高效运行是一个相当牛逼的技能。Shine说,这种技能被技术社区热切地保护了起来,却并没有扩散,但最近的12个月内发生了戏剧性的变化。大家都接受了一个事情,即需要让利用新的技术变得更加容易。
我们把人们带回上世纪80年代,那时如果你能有现在通过代码来获取所有的数据和发现新见解的能力,你将会变得有多么的多产。
但现在新的问题是,大数据技术在迅猛扩散,各种版本的Hadoop、NoSQL,以及提供和整合数据的新方法层出不穷。
没有一个CIO因为把这些东西能够‘粘合’在一起而获得奖励。企业并不在乎你多快多好的把这些粘合在一起。企业也不在乎你到底能多快的帮助他找到客户流失数据。Shine说。
然而,现在的技术允许企业从他们通常的生产数据中发现意想不到的商业潜力。
Shine援引了他在福利和工资服务行业中的一个客户的情况,对于工资变化、毕业生和参与者的信息,这个客户自己处理数据后得到的信息,甚至要比政府提供的信息更能准确描绘宏观经济。
他说:那些看起来传统的组织,实际上已经有一个业务,即他们意识到如果它们以数据为中心,并且利用数据,以及尽可能地结合其它他们能获得的数据,他们就能够基本做出比现在他们能做出来的东西更具根本价值的东西,他说。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21