
大数据:创造崭新的生存环境_数据分析师
大数据,已经为人类创造出一个崭新的环境。信息技术使人类置身于一个崭新的数字化的数据环境,这个环境一方面扩大了人类的理解,另一方面,作为个体则必须在这个特定的环境中对自己的目的、价值和意图进行重建,从而达到强调自己个性和分享他人个性的理解。
各行各业,当下是言必称数据。那么究竟何为大数据呢?根据我的理解,如果说互联网是关于“物”的,那么大数据就是关于“人”的,所以说只有关于人的数据才能称之为大数据。大数据并非数据大。纯粹从量上看,大数据在互联网上早就存在了,在其基础之上,催生了整个搜索产业。可当下时髦的“大数据”一词却有所不同,它所展示的是以网络为依托的新型社会媒体的一个方面。由于直接与人相关,大数据成了金矿,有待人们进行数据挖掘,并从中寻求各种机会。数据挖掘已是相当成熟的领域,它把人的行为的结构化数据与其背景和人口统计学的信息相结合,已经产生出很多成果和应用,如有的放矢的广告和营销等。人们可以把社会媒体大数据中提取出的自然语言文本的情感挖掘视为一种数据挖掘的自然延伸。由于大数据的无限开放性,未来的潜力甚至更大。
人的行为维度具有无限的可能性,但人的资源却又是有限的。那么如何协调无限和有限的关系?由于有了海量的数据和强大的计算处理能力,有了人与人、人与物的互联互通,就是可以成就人的行为的无限可能性。举个例子来说,电子商务把这一点体现得淋漓尽致。但传统的数据由于属性有限,个体参与度较低,其价值预期比例大,即数据处于压缩状态,而无法协调无限和有限的关系。大数据体现的结果就是将传统的数据“解压缩”,使其数据密度大大减小,从而放大个体数据的效应。由于大数据是关于人的,那么它就不单是一个技术问题,而且也是一个管理问题。认识到这一点就要破除传统的管理办法,将数据打通,使其不断更新,避免产生“数据孤岛”现象。那么,首先就要给出“全量数据”,也就是说,关键的数据不能缺失;其次,那些关键信息是不能靠专家规定。
大数据是关于人的,可是它们却都要被计算机处理。因此关于人的数据一定要有关于原始大数据的“元数据”,它们是为机器服务的。必须通过元数据的语义标示并赋予其意义,才能被机器处理。因此,若想从数据中发现知识,就必需大量的元数据。元数据就好比影视剧中的“桥段”,将机器中的原始数据与人的行为连接起来。而大数据挖掘技术恰恰就是针对元数据的。尽管如此,大数据还是有其无法企及的地方。大致可以归纳为以下几点:不能没有有效的商业模式,不能替代管理的决策力,不能保证消除噪音,不能进行无目的的知识发现,不能一次建模终身受益,不能替代领域专家,不能忽略数据标注,等等。同时也要看到,大数据并非一个终极阶段,它的出现不过是人类历史进程的一个环节,其重要意义在于是计算机技术为整个人类带来变革中的一步。回顾历史,计算机从上个世纪50年代起就在人类历史上开始了潜移默化的革命,其根本标志就是“数字化”,以及物理世界和虚拟世界的无缝接合。
既然是历史的一个发展环节,那么也就可以对未来趋势做出一定的预测。与以往历史上其他重要变革都是一样的,要通过资源——大数据——的原始积累,再过渡到商业和社会服务的差异化(即因人而异),直到人类对虚拟世界的行业和社会服务加以规范以实现公平合理的数据资源分配。始于18世纪的工业革命经历了一百多年,但这次数字的革命将以更快的形式发生。由大数据引发的下一代技术很可能是更大规模的、面向数字化行业的转变。因而,使得现在物理世界的众多传统行业将向数字世界全面或部分转换和融合。这种转变也让许多现在需要众多专家的领域以另一种形式出现。具体可以体现在很多行业的在整体的“食物链”的上下游的改变。医生、科学家和教师等,到了那一天或许变成为大数据输送原料的数据采集者和分析结果的“工人”。
在工业社会,通过利用人们日常生活所留下的各种数据,便可以掌控人的生活方式、习惯、下落以及社会关系等。而到了信息社会,这些数据必然会被数字化,因而人们的各种道德行为、伦理准则和社会生活也会随之产生相应的改变。信息技术使人类置身于一个崭新的数字化的数据环境,这个环境一方面扩大了人类的理解,另一方面,作为个体则必须在这个特定的环境中对自己的目的、价值和意图进行重建,从而达到强调自己个性和分享他人个性的理解。任何技术都倾向于创造一个新的人类环境。而信息技术、电脑网络乃至最近问世的大数据,已经为人类创造出一个崭新的环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10