预测2015:智能大数据分析成热点_数据分析师
“现在对大数据来讲就是两个字"落地",我们开会请一些专家讲大数据多么重要,没有什么意义,各个省市的领导都讲大数据,这已经不是新的东西。”中国工程院院士李国杰在2014中国大数据技术大会上首个发言,直接点题:“产业界很重要的一件事情是怎么样把大数据用来提高我们国家我们政府治理能力现代化,这个不亚于提高GDP。”
李国杰认为,在应用上,云计算、3D打印技术从技术出现到产业化可能是2到5年,但大数据会更长些,从实践转换成主流产业可能需要5~10年。以前我们的经济增长主要靠资源和汗水,而下一步的经济发展要靠智力创新,要以大数据的应用来以减少能耗,降低环境污染。
2012年,“大数据”一词开始大热。两年来,已经在商业、工业、交通、医疗、社会管理等多方面有了应用,在今年的第二届大数据技术大会上,已经少有人讲重要性,更多是应用、技术以及最底层的算法。
中科院计算所研究员、中国计算机学会大数据专家委员会秘书长程学旗发表了大数据白皮书与发展趋势报告。这份报告由中国计算机学会大数据专家委员会和中关村大数据产业联盟组织撰写,用时大半年。
对2015年大数据发展预测,共有10个方面。首先就是结合智能计算的大数据分析成为热点,包括大数据与神经计算、深度学习、语义计算以及人工智能其他相关技术结合,成为大数据分析领域的热点。
第二点是数据科学将带动多学科融合,但是数据科学作为新兴的学科,其学科基础问题体系尚不明朗,数据科学自身的发展尚未成体系。
第三是跨学科领域交叉的数据融合分析与应用将成为今后大数据分析应用发展的重大趋势。大数据技术发展的目标是应用落地,因此大数据研究不能仅仅局限于计算技术本身。
大数据将与物联网、移动互联、云计算、社会计算等热点技术领域相互交叉融合,产生很多综合性应用。近年来计算机和信息技术发展的趋势是,前端更前伸,后端更强大。物联网与移动计算加强了与物理世界和人的融合,大数据和云计算加强了后端的数据存储管理和计算能力。今后,这几个热点技术领域将相互交叉融合,产生很多综合性应用。
此外,十大趋势还包括:大数据多样化处理模式与软硬件基础设施逐步夯实;大数据的安全和隐私问题持续令人担忧;新的计算模式将取得突破;各种可视化技术和工具提升大数据分析;大数据技术课程体系建设和人才培养是需要高度关注的问题;开源系统将成为大数据领域的主流技术和系统选择。
程学旗用“融合、跨界、基础、突破”来总结这十大趋势。他进一步解释,融合是说在产业里面,比如说在垂直行业的融合,在企业里面垂直融合,应用融合、技术融合等;跨界,基于大数据使不同学科不同应用领域跨界;基础,就是说我们大数据发展亟待在一些基础方面进一步地夯实,2014年比2013年基础更强,我们期待2015年基础进一步的夯实,包括生态环境,包括大数据资源的共享;突破,我们会在预测在2015年在一些大数据的分析,大数据的一些系统方面能够取得相关性的突破。
对于大数据研究的难点,很多人把数据公开列在第一位。对此,李国杰认为“共享”更准确一些。对于政府部门的难点在于公开的尺度,另外是否有能力把数据用好。而指望商业公司拿出数据,不现实,因为这些数据的获得是商业公司的投入。
但对于这种说法,一些人并不认同。中国人民大学教授信息学院院长杜小勇教授认为,现在高校和研究机构拿到数据不是问题,关键是企业提出解决不了的问题,把数据拿出来,求助于研究者,研究者是否能够有效解决。就像大数据比赛,让企业出的题目才会是真正的问题。
另外,大数据人才也是一个重要问题。现在的问题是既对行业熟悉,又能融合创新的顶类人才稀少。李国杰强调一点,“现在要让企业和研究者明白一点,数据不是在谁手中,谁就有优势,而是要大家一起研究,融合跨界研究,数据才会产生财富。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20