大数据营销:传统企业的华丽转身_数据分析师
近几年,大数据的火热程度自不待言,数据分析在营销领域的广泛运用,使得越来越多的广告主意识到,固守着传统企业的营销模式,已经Out了。于是,向互联网转型迫在眉睫。然而如何顺利转型,却不是每个广告主都能做到的。怎样才是有效的大数据营销模式,在2014悠易DSP DAY上海站的论坛中,来自数据分析行业专家,成功完成互联网华丽转身的知名传统企业相关负责人,将带您一同探寻大数据营销的奥秘。
大数据营销趋势及扮演的角色
大数据营销要产生效果,需要一定的学习积累包括磨合,这个不是短期内可以产生效果的,它不像今天大家都在投的搜索引擎和直接投放电视广告,预算越大,产生的营销效果越好,这是可以有正向比例的。而利用大数据做营销,效果就如同Log抛物线,越到顶端加速越快,但是起步相对比较难,如果没有等到加速阶段就放弃,自然不会产生客观的效果,对于广告主来说,需要意识到的是,大数据营销需要背后海量数据的积累和分析,这是和普通的营销方式所不同的。
安客诚亚太区产品总监李辉表示,即使有很多的趋势,但大数据营销的本质没有变,就是通过合适的渠道找到合适的人,建立关系,实现销售。最关键的还是营销。
还有一个就是移动,移动造成的受众时间碎片化,跟PC广告不同的是,广告主需要想出受众所在的场景,这是比较困难的。
“在和广告主接触的时候,被问到最多的数据营销问题就是数据带来的价值”,李辉讲到。“数据不是短期内可以一蹴而就的,企业需要有一个内部的数据系统,这对企业也是一个很大的转型。
作为国内知名的广告主企业,海尔做营销的主要目的是什么?海尔是不是真正使用了大数据营销,有成功的解决方案?
海尔家电产业集团数据战略发展总监孙鲲鹏说:无交互不海尔,无数据不营销。数据可以提升我们的营销的效果,通过对数据的采集、挖掘、预测,能够帮助我们提高海尔的营销效率和效果,这是直接的好处。另外还有一个根本的好处是优化用户体验,以前没有数据做基础的时候,企业是单方面的把产品推销给用户。现在有了数据,可以通过需求预测数据模型洞察用户需求,大规模一对一精准营销,这样的用户体验是不一样的。也就是说,以前是为产品找用户,现在是为用户找产品。
至于海尔的数据模型是如何建立的,安客诚李辉介绍说,这些都基于海尔几十年的经验和线下习惯。安客诚将海尔系统来自不同渠道的售后售前和线上数据整合起来,基于这个可以做一些用户行为分析、建模、标签化。在应用到媒体的时候,还有一个要解决的问题,就是把数据和媒体数据实现连接,因为媒体这边也有用户人群的画像,有这么多用户标签,海尔的数据和悠易的数据对接,就可以实现在里面的人群寻找。
未来数字化营销的趋势展望
对企业来说,大数据营销已经成为未来营销新趋势,广告主期待未来会有什么数据在国内市场产生?更期待什么样的数据产品?
当提到这个问题时, 孙鲲鹏表示主要有三个方面:
第一是生态圈。目前海尔数据偏线下,从生产、开发到销售、服务,拥有的是第一方的线下实名数据,缺少线上数据,期待建立一个数据生态圈,在确保用户数据安全的条件下,借用先进的方法,让外部的线上数据和海尔的线下数据进行匹配,丰富用户画像,更加精准地洞察用户。
第二是开放。迫切希望数字营销行业能够开放,而不是大家都把自己的信息关在围墙内。越开放越安全,越关门越危险。至于开放什么?希望多举行类似的论坛,互相连接,不谈恋爱不见面怎么结婚?
第三是标准。希望建立数据行业标准。比如说安全,到底什么叫数据安全?比如海尔与互联网企业之间,什么样的安全标准双方都可以接受?包括企业的DMP数据管理平台与外部的DSP平台对接,PMP、RTB的开展,现有标准是否最合适?而且这个标准需要通俗易懂,否则这个新事物很难快速推广。
对于建立行业标准,安客诚李辉也表示赞同,未来安客诚将解决数据连接性问题,怎样能够有一个很好的数据连接技术平台,能够既保护好数据的产权,又实现数据的价值衡量。最后实现技术层面和整个业态的开放和广告主的开放。
杨纯表示,Admaster在2015年更希望为广告主提供好两个方面的工作,第一,连接外面的互联网数据,更好的为顾客服务。第二,帮助广告主把现在已有的数据,包括自有数据,怎么能够更好的在媒介环境里形成更加清晰全面的认识,只有了解才能投放,这两件事情做完以后,就是整个大数据的体现。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28