利用大数据供应链释放商业价值_数据分析师
现如今,数据技术飞速发展,但大量企业数据并未得到充分利用。Gartner近期的一份调查显示,85%的《财富》500强企业都未充分发掘大数据所蕴藏的潜力并据此形成竞争优势,这样的情况将持续至2015年底。异曲同工的是,埃森哲的研究发现,虽然半数的受访企业很重视数据的准确性,但绝大多数管理者并不清楚数据分析项目会带来怎样的业务成果。企业的数据生态系统正变得日益复杂,各自为政的“数据孤岛”却比比皆是,限制了企业从数据中创造价值。
为了释放数据所蕴藏的潜力,企业应着手将数据视为一条供应链,使该链条以简单、有效的方式在整个企业中流动,并最终贯穿包括供应商和客户在内的整个企业合作伙伴生态系统。通过有效的配置和管理,数据供应链有助企业发掘内部数据,对更多数据来源进行充分利用,并最终产生切实可行的业务洞察力。
而对于强有力的数据供应链而言,数据加速起着至关重要的作用。数据加速主要依托相关工具和技术快速获取海量数据(从数据源输入专门的数据系统),并能使其迅速存储和取用。具体而言,企业能够通过数据加快节奏获取有价值的数据,进而进行数据分析,获取洞察力并据此采取行动,有时甚至能在机遇窗口极为短暂的情况下迅速交付。
由此可见,数据加速能帮助企业克服数据迁移、数据处理和数据交互的数据相关挑战,从而从根本上解决如何使数据从源头迅速迁移到有需求的企业部门,如何尽快处理数据以获取可行洞察力,以及如何快速响应用户或应用提交的查询请求等问题。
过去,数据在企业中的迁移缓慢且相对直接:数据首先被收集至暂存区,随后再转换成适当的格式,并加载存入同数据源,然后以点对点的形式将数据直接传输至数据集市,供用户和应用调取使用。然而,随着数据量和数据种类的急剧增加,这种传统的流程已难以为继。
物联网进一步推动了数据迁移的发展。到2020年,全球将有多达260亿台设备集成、纳入到物联网当中。每台互联设备都会生成数据,并且具有各自的形式和特征。对于出自各类源头、各式各样的数据,要想从源头把对应数据完整地传输到有需求的企业部门,难度好比将消防龙头当作引水口,并且要求做到滴水不漏。而数据加速恰恰有利于企业有效管理这项艰巨而又工程浩大的任务,通过各种方式将数据纳入企业的数据基础架构,确保数据能够快速存取。
长期以来,企业一直通过数据处理来获取切实可行的洞察力。然而,有待处理的数据量和数据种类显著增加。为适应该情况,实现又快又准的处理结果,企业必须培养相应的数据处理能力。
实时分析技术的崛起为企业带来了诸多全新机遇。良好的分析技术会对输入数据进行预处理。例如,通过监测客户所处位置,企业能在客户接近潜在购买地点时,向客户的移动设备发送促销或折扣信息。而更加出色的技术则会将流数据与历史(已建模的)数据有机结合起来,从而做出更加明智合理的决策。举例而言,如果能将客户位置与其购买历史对应起来,企业就能向同一位客户发送量身定制的个性化促销信息,从而提高购买的可能性。
为从更加快速的数据处理中全面获益,企业必须对计算机集群进行有效利用——即通过组织有序的成百上千台计算机筛选海量数据。市场上有关数据快速存取的新型解决方案已如雨后春笋般涌现,每一种方案都为数据处理速度、耐久性和准确性提供了有力保证。数据加速能为实现更快的数据处理提供支持,利用计算机集群的软硬件升级,使计算机的运行效率得到前所未有的提升。
数据交互主要关乎数据基础架构的可用性。用户或应用会向基础架构提交查询要求,并期望在可接受的时间范围内获得响应。传统的解决方案已使人们能够轻松地提交要求、获得所需结果,获取切实可行的洞察力。但是,大数据的兴起催生出了许多全新的编程语言,阻碍了现有用户采用这些系统。此外,由于数据规模庞大,用户不得不等候数十分钟、甚至好几小时才能获得查询结果。
用户等待时间越久,获取洞察力所需时间也就越长,进而导致业务决策和满足客户期望的过程拖沓、延缓。可想而知,客户在向自身用户提供重要服务时,例如零售交易处理,可能会要求响应时间必须达到次秒级(毫秒)的水平。而在相对不太重要的业务中,客户能够接受的响应时间也许会稍长一些。数据加速能为实现更快的数据交互提供支持,即以普遍接受的方式将用户和应用与数据基础架构关联起来,并确保按要求快速提交查询结果。
为推动数据加速,企业应从众多不同的数据技术组件中选定适用的范围构建架构。这些组件包括:大数据平台、复杂事件处理、数据采集、内存数据库、缓存集群以及各种套装设备等。同时,架构组件只有经过正确的组合和架构配置,充分利用各自的互补优势,方能够实现最大价值。为了构建能够支持数据加速的数据供应链战略,企业可以从以下几点着手准备:
大数据的诞生,使相关技术门槛降至历史新低。但是,大数据同样也带来了各种挑战。为了应对这些挑战,企业应建立数据供应链,通过数据加速加快数据的迁移、处理与交互,从而使决策者得以更加迅速地捕获数据洞察力并采取行动,最终实现数据分析投资回报。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16