
spss的数据分析报告_spss的数据分析实例_spss的数据分析(2)_数据分析师
tisti Statistic c Educationa l Level 474 (years) Current Salary 474
Statistic
Statistic
Statistic
Std. Std. Statisti Statisti Erro Erro c c r r
8
21
13.49
2.885
-.114
.112 -.265
.224
$15,750
$135,000
$34,419.5 $17,075.66 2.125 7 1 $17,016.0 $7,870.638 2.853 9
.112 5.378
.224
Beginning 474 Salary Previous Experience 474 (months)
$9,000
$79,980
.112 12.390 .224
0
476
95.86
104.586
1.510
.112 1.696
.224
2
Months 474 since Hire
63
98
81.11
10.061
-.053
.112 -1.153
.224
如表所示,以起始工资为例读取分析结果,474名职工的起始工资最小值为$9000 ,最大 值为$79980,平均起始工资为$17016,标准差为$7870.638,偏度系数和峰度系数分别为 2.853和12.390。其他数据依此读取,则该表表明474名职工的受教育水平、起始工资、现工 资、先前工作经验、现在工作经验的详细分布状况。
3、 Exploratory data analysis。
(1) 交叉分析。 通过频数分析能够掌握单个变量的数据分布情况, 但是在实际分析中, 不仅要了解单个变量 的分布特征,还要分析多个变量不同取值下的分布,掌握多个变量的联合分布特征,进而分 析变量之间的相互影响和关系。 就本数据而言, 需要了解现工资与性别、 年龄、 受教育水平、 起始工资、本单位工作经历、以前工作经历、职务等级的交叉分析。现以现工资与职务等级 的列联表分析为例,读取数据(下面数据分析表为截取的一部分): 单因素分析用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。下面我 们把受教育水平和起始工资作为控制变量, 现工资为观测变量, 通过单因素方差分析方法研 究受教育水平和起始工资对现工资的影响进行分析。分析结果如下:
ANOVA Current Salary Sum of Squares 1E+011 2E+010 1E+011 df 89 384 473 Mean Square 1370635995 41484093.53 F 33.040 Sig. .000
Between Groups Within Groups Total
上表是起始工资对现工资的单因素方差分析结果。可以看出:F 统计量的观测值为 33.040, 对应的概率 P 值近似等于 0,如果显著性水平为 0.05,由于概率值 P 小于显著性水平 q,则 应拒绝原假设,认为不同的起始工资对现工资产生了显著影响。
ANOVA Current Salary Sum of Squares 9E+010 5E+010 1E+011 df 9 464 473 Mean Square 9850392785 106170173.2 F 92.779 Sig. .000
Between Groups Within Groups Total
同理,上表是受教育水平对现工资影响的单因素分析结果,其结果亦为拒绝原假设,所以不 同的受教育水平对现工资产生显著影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10