spss的数据分析报告_spss的数据分析实例_spss的数据分析(3)_数据分析师
4、 相关分析。相关分析是分析客观事物之间关系的数量分析法,明确客观事物之间有怎 样的关系对理解和运用相关分析是极其重要的。 函数关系是指两事物之间的一种一一对应的关系,即当一个变量 X 取一定值时,另一 个变量函数 Y 可以根据确定的函数取一定的值。另一种普遍存在的关系是统计关系。统计 关系是指两事物之间的一种非一一对应的关系,即当一个变量 X 取一定值时,另一个变量
Y 无法根据确定的函数取一定的值。统计关系可分为线性关系和非线性关系。 事物之间的函数关系比较容易分析和测度, 而事物之间的统计关系却不像函数关系那样 直接,但确实普遍存在,并且有的关系强有的关系弱,程度各有差异。如何测度事物之间的 统计关系的强弱是人们关注的问题。 相关分析正是一种简单易行的测度事物之间统计关系的 有效工具。
Correlations Beginning Months Salary since Hire .880** .084 .000 .067 474 474 1 -.020 .668 474 474 -.020 1 .668 474 474 .045 .003 .327 .948 474 474 -.010 .054 .833 .244 473 473 Previous Experience (months) -.097* .034 474 .045 .327 474 .003 .948 474 1 474 .802** .000 473
Current Salary
Beginning Salary
Months since Hire
Previous Experience (months) Years
Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N
Current Salary 1 474 .880** .000 474 .084 .067 474 -.097* .034 474 -.144** .002 473
Years -.144** .002 473 -.010 .833 473 .054 .244 473 .802** .000 473 1 473
**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).
上表是对本次分析数据中,现工资、起始工资、本单位工作时间、以前工作时间、年龄五个 变量间的相关分析,表中相关系数旁边有两个星号(**)的,表示显著性水平为 0.01 时, 仍拒绝原假设。一个星号(*)表示显著性水平为 0.05 是仍拒绝原假设。先以现工资这一变 量与其他变量的相关性为例分析,由上表可知,现工资与起始工资的相关性最大,相关系数 为 0.880,而与在本单位的工作时间相关性最小,相关系数为 0.084。 5、 参数检验。 首先对现工资的分布做正态性检验,结果如下:
Histogram
120
100
80
Frequency
60
40
20 M ean = $34, 419. 57 St d. D ev. = $17, 075. 661 N = 474 $0 $20, 000 $40, 000 $60, 000 $80, 000 $100, 000 $120, 000 $140, 000
0
C urrent S alary
由上图可知,现工资的分布可近似看作符合正态分布,现推断现工资变量的平均值是否为
4
$3,000,0,因此可采取单样本 t 检验来进行分析。分析如下:
One-Sample Statistics Std. Error N Mean Std. Deviation Mean
One-Sample Test Test Value = 30000 95% Confidence Interval Mean t Current Salary 5.635 df 473 Sig. (2-tailed) .000 Difference $4,419.568 of the Difference Lower $2,878.40 Upper $5,960.73
由 One-Sample Statistics 可知 ,474 名 职工的现工资 平均值为¥ 34,419.57 ,标准差 为 $17,075.661,均值标准误差为$784.311。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29