spss的数据分析报告_spss的数据分析实例_spss的数据分析(3)_数据分析师
4、 相关分析。相关分析是分析客观事物之间关系的数量分析法,明确客观事物之间有怎 样的关系对理解和运用相关分析是极其重要的。 函数关系是指两事物之间的一种一一对应的关系,即当一个变量 X 取一定值时,另一 个变量函数 Y 可以根据确定的函数取一定的值。另一种普遍存在的关系是统计关系。统计 关系是指两事物之间的一种非一一对应的关系,即当一个变量 X 取一定值时,另一个变量
Y 无法根据确定的函数取一定的值。统计关系可分为线性关系和非线性关系。 事物之间的函数关系比较容易分析和测度, 而事物之间的统计关系却不像函数关系那样 直接,但确实普遍存在,并且有的关系强有的关系弱,程度各有差异。如何测度事物之间的 统计关系的强弱是人们关注的问题。 相关分析正是一种简单易行的测度事物之间统计关系的 有效工具。
Correlations Beginning Months Salary since Hire .880** .084 .000 .067 474 474 1 -.020 .668 474 474 -.020 1 .668 474 474 .045 .003 .327 .948 474 474 -.010 .054 .833 .244 473 473 Previous Experience (months) -.097* .034 474 .045 .327 474 .003 .948 474 1 474 .802** .000 473
Current Salary
Beginning Salary
Months since Hire
Previous Experience (months) Years
Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N
Current Salary 1 474 .880** .000 474 .084 .067 474 -.097* .034 474 -.144** .002 473
Years -.144** .002 473 -.010 .833 473 .054 .244 473 .802** .000 473 1 473
**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).
上表是对本次分析数据中,现工资、起始工资、本单位工作时间、以前工作时间、年龄五个 变量间的相关分析,表中相关系数旁边有两个星号(**)的,表示显著性水平为 0.01 时, 仍拒绝原假设。一个星号(*)表示显著性水平为 0.05 是仍拒绝原假设。先以现工资这一变 量与其他变量的相关性为例分析,由上表可知,现工资与起始工资的相关性最大,相关系数 为 0.880,而与在本单位的工作时间相关性最小,相关系数为 0.084。 5、 参数检验。 首先对现工资的分布做正态性检验,结果如下:
Histogram
120
100
80
Frequency
60
40
20 M ean = $34, 419. 57 St d. D ev. = $17, 075. 661 N = 474 $0 $20, 000 $40, 000 $60, 000 $80, 000 $100, 000 $120, 000 $140, 000
0
C urrent S alary
由上图可知,现工资的分布可近似看作符合正态分布,现推断现工资变量的平均值是否为
4
$3,000,0,因此可采取单样本 t 检验来进行分析。分析如下:
One-Sample Statistics Std. Error N Mean Std. Deviation Mean
One-Sample Test Test Value = 30000 95% Confidence Interval Mean t Current Salary 5.635 df 473 Sig. (2-tailed) .000 Difference $4,419.568 of the Difference Lower $2,878.40 Upper $5,960.73
由 One-Sample Statistics 可知 ,474 名 职工的现工资 平均值为¥ 34,419.57 ,标准差 为 $17,075.661,均值标准误差为$784.311。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12