京公网安备 11010802034615号
经营许可证编号:京B2-20210330
spss的数据分析报告_spss的数据分析实例_spss的数据分析(3)_数据分析师
4、 相关分析。相关分析是分析客观事物之间关系的数量分析法,明确客观事物之间有怎 样的关系对理解和运用相关分析是极其重要的。 函数关系是指两事物之间的一种一一对应的关系,即当一个变量 X 取一定值时,另一 个变量函数 Y 可以根据确定的函数取一定的值。另一种普遍存在的关系是统计关系。统计 关系是指两事物之间的一种非一一对应的关系,即当一个变量 X 取一定值时,另一个变量
Y 无法根据确定的函数取一定的值。统计关系可分为线性关系和非线性关系。 事物之间的函数关系比较容易分析和测度, 而事物之间的统计关系却不像函数关系那样 直接,但确实普遍存在,并且有的关系强有的关系弱,程度各有差异。如何测度事物之间的 统计关系的强弱是人们关注的问题。 相关分析正是一种简单易行的测度事物之间统计关系的 有效工具。
Correlations Beginning Months Salary since Hire .880** .084 .000 .067 474 474 1 -.020 .668 474 474 -.020 1 .668 474 474 .045 .003 .327 .948 474 474 -.010 .054 .833 .244 473 473 Previous Experience (months) -.097* .034 474 .045 .327 474 .003 .948 474 1 474 .802** .000 473
Current Salary
Beginning Salary
Months since Hire
Previous Experience (months) Years
Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N
Current Salary 1 474 .880** .000 474 .084 .067 474 -.097* .034 474 -.144** .002 473
Years -.144** .002 473 -.010 .833 473 .054 .244 473 .802** .000 473 1 473
**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).
上表是对本次分析数据中,现工资、起始工资、本单位工作时间、以前工作时间、年龄五个 变量间的相关分析,表中相关系数旁边有两个星号(**)的,表示显著性水平为 0.01 时, 仍拒绝原假设。一个星号(*)表示显著性水平为 0.05 是仍拒绝原假设。先以现工资这一变 量与其他变量的相关性为例分析,由上表可知,现工资与起始工资的相关性最大,相关系数 为 0.880,而与在本单位的工作时间相关性最小,相关系数为 0.084。 5、 参数检验。 首先对现工资的分布做正态性检验,结果如下:
Histogram
120
100
80
Frequency
60
40
20 M ean = $34, 419. 57 St d. D ev. = $17, 075. 661 N = 474 $0 $20, 000 $40, 000 $60, 000 $80, 000 $100, 000 $120, 000 $140, 000
0
C urrent S alary
由上图可知,现工资的分布可近似看作符合正态分布,现推断现工资变量的平均值是否为
4
$3,000,0,因此可采取单样本 t 检验来进行分析。分析如下:
One-Sample Statistics Std. Error N Mean Std. Deviation Mean
One-Sample Test Test Value = 30000 95% Confidence Interval Mean t Current Salary 5.635 df 473 Sig. (2-tailed) .000 Difference $4,419.568 of the Difference Lower $2,878.40 Upper $5,960.73
由 One-Sample Statistics 可知 ,474 名 职工的现工资 平均值为¥ 34,419.57 ,标准差 为 $17,075.661,均值标准误差为$784.311。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05