
spss的数据分析报告_spss的数据分析实例_spss的数据分析(4)_数据分析师
图表 One-Sample Test 中,第二列是 t 统计量的观测 值为 5.635;第三列是自由度为 473(n-1) ;第四列是 t 统计量观测值的双尾概率值;第五列 是样本均值和检验值的差;第六列和第七列是总体均值与原假设值差的 95%的置信区间为 ($2,878.40 , 5,960.73) 该问题的 t 值等于 5.635 对应的临界置信水平为 0, 。 远远小于设置的 0.05,因此拒绝原假设,表明该公司的 474 名职工的现工资与$3,000,0 存在显著差异。 6、 非参数检验。对本数据中的年龄做正态分布检验,结果如下:
Histogram
80
60
Frequency
40
20
0 30 40 50 60 70 80
M ean = 47. 4 1 S t . D e v. = 1 1 . 7 5 d 7 N = 473
Y ears
由上图两图可知,474 名职工的年龄分布并不完全符合正态分布,所以现推断其职工年龄的 平均数在 40-45 岁之间,可对其采用非参数检验的方法进行检验。检验结果如下:
Chi-Square Test
5
Frequencies Years Observed N Expected N 41 23.5 34 23.5 22 23.5 18 23.5 13 23.5 13 23.5 141
1 2 3 4 5 6 Total
Category 40 41 42 43 44 45
Residual 17.5 10.5 -1.5 -5.5 -10.5 -10.5
Test Statistics Chi-Square a df Asymp. Sig. Years 28.489 5 .000
a. 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 23.5.
上面的第一个表为卡方检验的频率表,输出有关频率统计。从表中可知,职工年龄为 40 岁 的有 41 名,期望值为 23.5,残差为 17.5,其余读取方式相同。第二个表是卡方检验统计表, 显示检验的卡方值,自由度和渐进显著性水平分别是 28.489、5、0。因为显著性水平 0 小于 0.05,因此拒绝原假设,即 474 名职工的平均年龄不在 40 到 45 岁之间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09