京公网安备 11010802034615号
经营许可证编号:京B2-20210330
ARIMA 模型:
描述时间序列数据的变化规律和行为,它允许模型中包含趋势变动、季节变动、循环变 动和随机波动等综合因素影响。具有较高的预测精度,可以把握过去数据变动模式,有助于 解释预测变动规律,回答为什么这样本想早点完成这个时间序列的主题,但最近一直非常多的事情,又 耽搁了这么长时间。朋友们问的问题没有收尾总是不好,抓紧时间完成吧。 因为,后天要参加中国电信集团的一个 EDA 论坛,要仔细准备发言稿!在交流的过程 中,发现大家都对预测问题非常关注,尤其是数据挖掘领域,有时候分类问题与预测问题在 表达上区分不开,有时候分类就是预测,比如通过判别分析、C5.0 规则或 Logistics 回归 进行监督类建模,得到的结论说该客户是什么类别等级,似乎也可以说是预测;当然,如果 能够预测该消费者什么时候流失,也就是进行了分类;这样说吧,其实有时候并不需要严格 区分分类和预测,关键是时间点。从这也可以看出,预测问题内涵和外延是非常宽泛的,但 研究者心中要有数,这决定了你得到的结果该如何应用。 前面的博文提到,如果我们考虑时间序列预测包含有预测和干扰变量如何解决的问题。 从方法角度讲,过去没有统计分析软件要完成预测可以说是困难的,现在有了软件工具 就方便多了。 从技术角度讲:
预测模型如果能够排除因为异常原因造成的时间点事件和时间段时间,就好了。例 如某天停电没有开业,或者某一段时间比如发生甲型 H1NI 一周没有营业收入,这 些事件必须能够告诉模型未来不会再发生了;当然,我们也要把未来会重复发生的干扰因素纳入模型,例如:我们学校某天要开 运动会,小卖部的可乐销量一定提高,或者我们学校 7-8 月份放暑假,销量一定减 少,像这样的时间点和时间段事件未来会重复出现,我们如果能够告诉模型,那么 预测会更准确。
当然如果我们建立的模型能够预测未来,并能够将未来可预见的事件,包括时间点 和时间段干扰纳入预测是非常好的事情啦!
甚至,我们应该能够把预测模型中的,预测未来周期内的不可预见的时间点和时间 段随时干预预测结果,这就需要考虑如何将预测模型导入生产经营分析系统了。
下面的数据延续前两篇的案例, 只是增加了自变量, (因为手头这个案例没有干预因素变量)
在我们增加了 5 个自变量后,采用预测建模方法,选择专家建模器,但限制只在 ARIMA 模 型中选择。
确定后,得到分析结果,我们现在来看一下与原来的模型有什么不同。
从预测值看,比前一模型有了改进,至少这时候的模型捕捉了历史数据中的下降峰值, 这可以认为是当前比较适合的拟合值了。 如果我们观察预测结果,可以发现模型选择了两个预测变量。注意:使用专家建模器时, 只有在自变量与因变量之间具有统计显著性关系时才会包括自变量。如果选择 ARIMA 模 型,“变量”选项卡上指定的所有自变量(预测变量)都包括在该模型中,这点与使用专家建 模器相反;
当确定了最终选择的预测模型和方法后,我们就可以预测未来了,当然你要指定预测未 来的时间点,这里我们时间包括年、季度和月份;假定我们预测未来半年的销售收入。 我们分别设定:预测值输出,95%置信度的上下限。注意:SPSS 中文环境有个小 Bug,
必须改一下名字!
在选项中,选择你的预测时间,预测期将根据你事先定义的数据时间格式填写。(后面 的模型为了让大家看清楚,实际上我预测了一年的数据,也就是 2010 年的 4 个季度的 12 个月)。
自变量的选择问题,在预测未来半年的销售收入中,ARIMA 模型可以把其它预测变量 纳入考虑,但如何确定未来这些预测变量的值呢? 主要方法可以考虑:1)选择最末期数据;2)选择近三期数据的平均;3)选择近三期 的移动平均 这里我们选近三期移动平均作为预测自变量数值。
上面就是预测结果!于此同时,SPSS 活动数据集中也存储了预测值!
最后,我们要解决时间序列预测的检验和统计问题!说实在话,我比较关注偏好商业应用,就是看得见就做得到!从上面的分析,我们基本上就知道了哪种预测模型更好,也就不去较真只有专业统计学者才关心的统计和检验问题, 把这些交给统计专家或学术研究吧! 如 ( 果你是写学术论文,就必须强调这一点了!) 实际上我们可以通过软件得到各种统计检验指标和统计检验图表!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15