如何设计 KPI 指标——关键绩效指标
KPI:关键绩效指标, 今年来企业一直关注这个问题,甚至有些公司,比如电信行业员工整天都围绕着 KPI 指标, 什么是 KPI 呢?关键绩效指标即以定量的指标衡量经营活动的量化结果,一般由客观计算 公式得出,并侧重考察当期绩效,最终成果以及对经营成果有直接控制力的工作;关键绩效 指标设定的原则应该依据“平衡计分卡”进行设定, 根据企业整体绩效目标及战略, 层层分解, 平衡考虑制定企业各层级的关键绩效指标。 关键绩效指标已经成为商业智能领域的重要体系和方法论, 如何从技术上实现 KPI 指标 设计,以及如何采用信息化手段能够呈现绩效指标,并实施管理和监控,成为构建商业智能 系统和经营分析系统的关键内容;
设计关键绩效指标的关键因素主要包括:
一致性: 保持与战略和目标一致; 所属性: 应归属个人或各团队拥有,并对其结果负责; 预测性: KPI 是衡量企业价值的推动者,期望绩效的领先绩效指标; 行动性: KPI 具有及时行动数据,用户可及时采取干预,提供绩效; 数量少: 让用户集中在几个重要价值的指标任务上; 简单性: 不要涉及复杂的指数,导致用户难直接施加影响; 平衡性: KPI 之间保持平衡并相互支持,不仅仅对局部优化流程; 触发变化:能触发一系列变化,尤其是高管进行监控; 标准化: 基于标准化定义、规则和计算方法,实现数据和仪表盘整合; 背景驱动:KPI 将绩效置于一定背景下,通过对象和阶段进行衡量; 激励性: 薪酬与 KPI 关联,在稳定期可提升影响力; 相关性: 进行定期评估及时更新;
设计关键绩效指标的 SMART 原则是: 根据经验, 在设计关键业绩指标的时候必须遵循 SMART 原则, 这五个字母分别代表一个具 体的含义:
S:业绩考核指标必须是具体和明确的,指标设计应当细化到具体内容,符合企业和 团队主导业绩目标,保证明确的导向性。
M:业绩考核指标应当是容易衡量的,工作业绩成果应体现为可以量化的指标。 A:业绩考核指标应当是可以达到的,在保证一定挑战性的基础上,指标应当是员工 在现有资源下经过努力可以实现的目标。
R:指业绩考核指标应当具有相关性,必须和企业的战略目标、部门的职能及岗位职 责紧密联系。
T:业绩考核指标应当是有明确的时间要求,关注工作完成的效率。
有关样本量代表性问题的解释
大部分从事调查研究的朋友,都会碰到“多大样本量”才用代表性问题,其实这个问题不光研 究人员会困惑, 企业也非常困惑。 那到底应该如何选择样本量呢?其实今天沈老师不是要回 答这个问题,而是帮助你:如何解释这样一个样本量是恰当或合适的,既满足统计要求,也 能考虑费用和可操作性! 1. 样本量的确定是费用与精度的函数,取决于研究的精度和费用,特别是实践中费用 考虑的更多! 2. 抽样调查,特别是随机抽样,样本有代表性,往往比普查更有效率,甚至精度更高, 这里我们主要计算和讨论抽样误差,非抽样误差是人为因素,考质量控制; 3. 样本量的确定有赖于随机抽样,或者说主要是针对随机抽样,需要统计推断下的计 算样本量,如果是非概率抽样,理论上没有计算和控制样本量的问题; 4. 如果研究只要 40-50 个样本,感觉上应该是非概率抽样(依赖被访者选择方式) 5. 即使是非概率抽样,我们很多时候也采用概率和统计分析及推断思想来进行数据分 析和下结论!只是这种方法没有完善的理论支持,或者说有可能因为研究者的主观 判断失误造成偏差; 6. 无论是概率抽样还是非概率抽样,样本量越大当然效果越好,结论越稳定(理论上 说) 7. 40-50 个样本在统计上属于小样本,t-检验,如果样本大于 60 或理想 120 以上, t 分布就是正态分布了,所以 40 个样本在统计上是最小推断总体的样本,换句话说
40-50 个样本是介于小样本和正态分布大样本的临界样本量;如果不严格的话 40 个样本就可以比较总体之间的统计差异了; 8. 所以,一般来讲,针对一个研究对象和人群,要进行比较最少 40 个样本,比如男 女差异,应该各拥有 40 人(80 人),或者说你们进行配额样本的时候要保证统计 比较的类别至少有 40 个样本; 9. 那么 40 个样本有代表性吗? 当然越多越好,越有代表性 10. 但如果调查对象非常一致,没有差异,只要问一个人就行了,所以要考虑研究对象 的差异性,如果差异大,当然样本量要大,如果没有差异,同质性较高样本量就少; 11. 总体的大小对样本量的选择没有影响,调查研究一般必须在研究前明确总体是谁, 大总体没有影响(上万人),中等总体有点影响(5000 人),小总体有很大影响 (千百个人);总体是你要推断的人群; 12. 再者要考虑研究对象在总体中拥有的比例(比如要找艾滋病人),如果比例非常低 的话,需要大样本才能找到;但往往商业研究就采用非概率抽样了,比如滚雪球抽 样,专家判断抽样,配额抽样等; 13. 另外,选择 40 个人,如果是经过我们主观判断的,有一种说法:叫条件概率,也 就是我们越了解研究目的和对象,我们就越能够做出正确判断;比如 P(A|B), 也就是说我们越了解 B 事件发生的概率,那么 A 发生的概率就越确定;就像我们在 Google 中搜东西,你的关键词=B 越准确,得到的结果 A 就越是你想要的东西; 14. 当然,如果你的主观判断错了,就会犯更大的错误 15. 还有就是希望得到的精度;如果得到的结果是 70%加减 10%误差我们可以接受, 但如果是总体本身就不到 8%,那 8%加减 10%,尾巴比头都大显然不行,当然到 底如何确定精度,是研究前你们与客户要明确的,事先研究设计确定的,不能事后 来说; 16. 记住:有时候我们研究本身不需要那么高的精度 17. 整个研究设计过程的质量控制可以更有效提升研究品质 18. 研究测试的技术(接近自然科学仪器测量)可获得更好研究品质 19. 根据精确的抽样,需要采用精确的统计分析,否则也达不到效果 20. 任何研究都不会完美,都是权衡和保守的过程,总的来讲保守不犯错.
数据分析咨询请扫描二维码
数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20