0.75㎡:血色的大数据_数据分析师
复旦大学博士后朱春霞火了。因为众多媒体纷纷传递这样一条信息:“在2004年的毕业论文中,朱春霞曾结合中外踩踏事故研究指出:景点室内达到1㎡/人、室外达到0.75㎡/人,即要立即启动应急预案。”在2014年午夜,上海外滩陈毅广场及周边辞旧迎新的群众,拥挤程度已经远远超过0.75㎡/人,而即使他们已明显感知到拥挤踩踏事故的危险,但根本无法离开可能夺去生命的危险地带。
上次去云南出差,我在飞机上偶遇一位国家地震局的专家,她此次赴云南的任务,就是与运营商交流:通信网络产生的数据能否给地震救援提供帮助。据她介绍,地震局发现:地震造成的损失情况分布,与地震震级、烈度等数据分布并不完全吻合;但与运营商基站退服的数据一致。因此地震局希望与运营商联手开展大数据研究,能否利用运营商的网络管理数据,对震后救援工作提供信息支撑和帮助。
“大数据”是当今炙手可热的话题。移动互联网的发展产生了海量数据,理论上利用这些数据可以做很多事情。可是,当各行各业都热衷于自身数据的获取、采集、存储,花巨资建成一个又一个的海量数据中心和云计算平台的时候,业内人士必须有清醒的认识:这就是传说中的大数据么?
现代化的IT技术和手段虽然可以降低实现成本,可以做很多以前很多不可能完成的技术处理;但是仅有数据是不够的。数据需要运营才能体现价值,而这绝不只是IT的工作,需要诸如城市管理的运营团队与IT系统协作,才能产生效果。
如何让数据体现价值?无论是传统的数据处理还是时髦的大数据,都有成熟的模式和范例:
模式之一,是通过静态数据的实时汇总统计,帮助运营团队形成对事件和实际状况的准确展现。比如前面说到的地震局案例中,运营商的网络建设与经济发展、人口分布等关联度更高,因此基站退服信息可能会更精准地体现地震的破坏性。如果将类似于这样的数据及时地汇总在一起,有助于救援人员对灾情做出正确的判断和应对,就是数据的价值。
模式之二,是通过对历史数据的建模分析,将复杂而难以量化的多种数据,组合计算成为简单的指标。这包括反映路况的道理拥堵指数、反映天气的穿衣指数,也包括前面提到的人员拥挤程度。室内1㎡/人、室外0.75㎡/人,这些数值是用生命为代价换得的,是历次踩踏事故的统计结果,完全可以成为城市管理者和活动组织者的高压线。而大数据的价值,就是能否不用付出这么大的代价,也能分析出从量变到质量的阈值。
模式之三,是整合上述两组模式,把采集到的数据与事先定义的阈值进行实时比对,当出现异常或者产生质变时,自动告警并启动应急措施。对于大数据的运营团队来说,要能及时应对变化,不仅要有数据做基础,更重要的是:事前要由相关单位制定应对各种异常情况的预案和措施。只有具备这些条件,当系统自动发生告警时,各单位才能根据预案进行及时的应对和正确的处理。
没有数据的时候,我们需要构建IT的获取能力和存储能力,因为数据是基础。在智慧城市等项目的开发建设中,城市应急预案系统被提升到重要地位,为此,我们做了很多基础建设。而今,经过几年的技术演进和积累,无论是IDC、云计算、大数据,还是高清视频监控、移动互联网等数据采集手段,各类技术方案的应用环境日趋成熟。现在我们真的要问了:这些花大价钱建起来的IT能力,花大力气积累起来的数据,又产生了哪些价值?
建设大数据,我们不仅需要的是IT能力,更需要的是运营能力。重建设轻运营,重金钱轻内涵,重眼前轻长远,教训就在眼前,就发生在全国城市管理水平最好的城市里!
希望血色的0.75㎡/人,能让我们明白大数据的真正价值,能让我们懂得数据运营的本质。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28