0.75㎡:血色的大数据_数据分析师
复旦大学博士后朱春霞火了。因为众多媒体纷纷传递这样一条信息:“在2004年的毕业论文中,朱春霞曾结合中外踩踏事故研究指出:景点室内达到1㎡/人、室外达到0.75㎡/人,即要立即启动应急预案。”在2014年午夜,上海外滩陈毅广场及周边辞旧迎新的群众,拥挤程度已经远远超过0.75㎡/人,而即使他们已明显感知到拥挤踩踏事故的危险,但根本无法离开可能夺去生命的危险地带。
上次去云南出差,我在飞机上偶遇一位国家地震局的专家,她此次赴云南的任务,就是与运营商交流:通信网络产生的数据能否给地震救援提供帮助。据她介绍,地震局发现:地震造成的损失情况分布,与地震震级、烈度等数据分布并不完全吻合;但与运营商基站退服的数据一致。因此地震局希望与运营商联手开展大数据研究,能否利用运营商的网络管理数据,对震后救援工作提供信息支撑和帮助。
“大数据”是当今炙手可热的话题。移动互联网的发展产生了海量数据,理论上利用这些数据可以做很多事情。可是,当各行各业都热衷于自身数据的获取、采集、存储,花巨资建成一个又一个的海量数据中心和云计算平台的时候,业内人士必须有清醒的认识:这就是传说中的大数据么?
现代化的IT技术和手段虽然可以降低实现成本,可以做很多以前很多不可能完成的技术处理;但是仅有数据是不够的。数据需要运营才能体现价值,而这绝不只是IT的工作,需要诸如城市管理的运营团队与IT系统协作,才能产生效果。
如何让数据体现价值?无论是传统的数据处理还是时髦的大数据,都有成熟的模式和范例:
模式之一,是通过静态数据的实时汇总统计,帮助运营团队形成对事件和实际状况的准确展现。比如前面说到的地震局案例中,运营商的网络建设与经济发展、人口分布等关联度更高,因此基站退服信息可能会更精准地体现地震的破坏性。如果将类似于这样的数据及时地汇总在一起,有助于救援人员对灾情做出正确的判断和应对,就是数据的价值。
模式之二,是通过对历史数据的建模分析,将复杂而难以量化的多种数据,组合计算成为简单的指标。这包括反映路况的道理拥堵指数、反映天气的穿衣指数,也包括前面提到的人员拥挤程度。室内1㎡/人、室外0.75㎡/人,这些数值是用生命为代价换得的,是历次踩踏事故的统计结果,完全可以成为城市管理者和活动组织者的高压线。而大数据的价值,就是能否不用付出这么大的代价,也能分析出从量变到质量的阈值。
模式之三,是整合上述两组模式,把采集到的数据与事先定义的阈值进行实时比对,当出现异常或者产生质变时,自动告警并启动应急措施。对于大数据的运营团队来说,要能及时应对变化,不仅要有数据做基础,更重要的是:事前要由相关单位制定应对各种异常情况的预案和措施。只有具备这些条件,当系统自动发生告警时,各单位才能根据预案进行及时的应对和正确的处理。
没有数据的时候,我们需要构建IT的获取能力和存储能力,因为数据是基础。在智慧城市等项目的开发建设中,城市应急预案系统被提升到重要地位,为此,我们做了很多基础建设。而今,经过几年的技术演进和积累,无论是IDC、云计算、大数据,还是高清视频监控、移动互联网等数据采集手段,各类技术方案的应用环境日趋成熟。现在我们真的要问了:这些花大价钱建起来的IT能力,花大力气积累起来的数据,又产生了哪些价值?
建设大数据,我们不仅需要的是IT能力,更需要的是运营能力。重建设轻运营,重金钱轻内涵,重眼前轻长远,教训就在眼前,就发生在全国城市管理水平最好的城市里!
希望血色的0.75㎡/人,能让我们明白大数据的真正价值,能让我们懂得数据运营的本质。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20