教育大数据,想说爱你不容易_数据分析师
近两年,“大数据”在教育领域日益成为热点名词,和“在线教育”相呼应。从今年新东方、学大等教育机构发布的教育产品来看,几乎每一款产品都会提到大数据。既然如此受到重视,那么在当下教育领域,“大数据”有何特点?又有何作为?
专家指出,目前国内教育领域的“大数据”仍处于概念阶段,大家都在起步和探索过程中,尚无比较成功的大数据应用案例,不少大数据应用也都处于较浅的层次。不过,随着教育大数据的不断积累和深入发展,“大数据”必将有利于我们的个性化教育,对教学和管理产生深刻影响。
随着“大数据”概念不断升温,教育行业如今也被认为是大数据可以大有作为的一个重要应用领域。几乎每家不甘落后的教育机构都在拥抱大数据,把大数据当作在激烈竞争中脱颖而出的秘密武器。
“其实,十几年前我们就在做数据仓库和数据挖掘。如今大数据这个概念兴起,主要基于两点,一是数据海量增长,处理样本数变多;二是物理运算能力增强,给处理海量数据带来可能。”在计算机博士、朗播网CEO杜昶旭看来,大数据既没有那么神秘,但也不像有些人想象得那么简单。
干扰性数据多 影响统计分析精度
杜昶旭认为,与其他行业的大数据相比,教育行业大数据目前数据量比较小,教育数据噪声也比较高。他解释,目前在线教育不像电商,用户数量庞大,数据可以累积到海量。而且教育垂直属性特别明显,大量数据会分流向不同垂直领域。
而不同垂直领域之间的数据融合度比较低,比如语文和数学的数据很难放到一起来分析;数据噪声简单讲指干扰性数据、无用数据,比如录播视频,用户行为很简单,有暂停、关闭、重看等等,但是这些操作的原因很多,并不一定是没看懂内容,所以干扰性数据非常多,数据统计分析的精度会受影响。
“此外,教育数据标准化程度非常低。数据大致可分为结构化数据和非结构化数据。以描述人一个人打比方,结构化数据就是人的身高、体重、性别;非结构化数据则可以是人的声音、照片等。”杜昶旭说,很多教育数据比如视频数据、语音数据等都是非结构化数据,数据模型构建会比较复杂,“所以,教育大数据需要解决数据量和数据处理的问题。”
优质技术分析 要有一流试题保障
互联网教育研究院院长吕森林也指出,教育大数据分析并不是有数据就可以,如果数据中有很多垃圾数据,那么分析得出的结论也可能是垃圾结论。
“比如题库类产品,一道题可能需要20多个指标来分辨学生各方面的情况,如区域、学科、难度、知识点等等,如果试题质量比较低,区分度比较低,那做大数据分析的意义就不会太大。此外,现在的大数据分析多集中在选择、判断等客观题,对带有步骤的主观题、作文等进行统计分析则有更高难度。”因此,题库的大数据分析看起来比较简单,但实际上技术、资金门槛都比较高。
业内点评
“习”比“学”更易采集和分析
那么,教育大数据可以发挥怎样的作用呢?大数据研究专家、上海海事大学经济管理学院副教授魏忠认为,大数据技术的应用将有利于个性化教育,标准化的学习内容由学生自己组织学习,学校和教师更多的是关注学生的个性化培养,教师由教学者逐渐转变为助学者。
“重要的是数据背后的那个人。”微课网副总裁夏明瑞以历史学科视频课程为例,如果用户观看几分钟就关掉了,以后再没看过,那就要关注用户的这种行为数据。他关掉的原因大致可能有两种:一种是学得非常好,另一种是学得不好,看不懂。单节课的数据可能不够精准,但对整个课程体系的数据进行统计分析之后就会相对精准了。
杜昶旭则认为,目前“学”的过程采集数据的难度较大,“习”的过程采集和分析数据会相对容易一些。“今年我们推出了能力图谱,通过对学生行为数据进行诊断,看看学生的问题到底在哪里,然后基于能力缺陷推送需要完成的训练任务,提高学生学习效率。”杜昶旭说,这种大数据分析既能帮助学生个性化学习,也能帮助老师进行个性化教学。
专家说法
大数据适应个性化学习
魏忠,数据研究专家、上海海事大学经济管理学院副教授魏忠
人们对大数据的理解有很多,目前我倾向于把大数据理解为全量数据。
科学研究最简单的是抽样方式,然后进行推导,后来人们发现这有很大问题,于是就有了统计学,用概率来解决问题。但是抽样的量一旦到了一定程度之后,并不一定是越大越精准,什么样的量是最好的,就需要考量。而如果把全量的数据都拿来进行分析,那肯定是最准确的,而所谓大数据应该是全量数据。
这种大数据与传统的数据相比,具有非结构化、分布式、数据量巨大、数据分析由专家层变化为用户层、大量采用可视化展现方法等特点,这些特点正好适应了个性化和人性化的学习变化。传统数据诠释的是宏观的教育状况、整体的学生水平,且其采集方法、内容归类、分析构成等已被摸索出一套成熟的标准,数据更多是在阶段性的评估中获得。而大数据更关注微观、个体层面,要求时时处处采集信息,全面客观记录信息,大量采用可视化展现方法等等,帮助信息收集方获取精准材料。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20