
加权方法:
采用因子加权:对满足特定变量或指标的所有样本赋予一个权重,通常用于提高样 本中具有某种特性的被访者的重要性;例如,研究一种香烟的口味是否需要改变, 那么不同程度吸食者的观点也应该有不同的重要性对待:例如:重度吸食者=3,经 常吸食者=2,偶尔/不抽烟=1,记住:实际应用时候,如果“经常/偶尔”的基数足 够大,往往单独分析,不进行加权处理;
采用目标加权:对某一特定样本组赋权,以达到们预期的特定目标;例如:我们想 要:品牌 A 的 20%使用者 = 品牌 B 的 50%使用者;或者品牌 A 的 20%使用者 = 使用品牌 A 的 80%非使用者;
采用轮廓加权:多因素加权,因子/目标加权不同(一维的),轮廓加权应用于对调查 样本相互关系不明确的多个属性加权;面对多个需要赋权的属性,轮廓加权过程应
该同时进行,以尽可能少的对变量产生扭曲;
我们应该知道,无论加权的动机是什么,但操作过程是一样的:
1. 依不同属性变量/指标将样本分为多个组(加权组), 然后根据所希望各个组代表的个 体规模赋予不同的权重;即明确分析子集/样本组,通常,经常以人口结构变量、地 域变量作为分类指标;明确各个分析子集/样本组中个体的代表性强弱(权重); 2. 加权是在数据收集结束后采取的数据“纠偏”行为,但一定要清醒的知道:配额设置 不合适、FW 执行差或其他错误而造成的“不好”的原始数据收集,即使加权也一定 是“无效的”; 3. “提前避免错误/失误发生,总好过事后的任何补救!”
事后加权案例: 例如:我们为了研究,得到某小公司职员吸烟习惯的信息,进行了一项调查。从 N=78 个 人的目录中抽出了一个 n=25 人的简单随机样本。在调查的设计阶段,并没有可用于分层 的辅助信息。在收集关于吸烟习惯的信息的同时,还收集了每个回答者的年龄和性别情况。 总共有 nr=15 个人作出了回答。 由此得到样本数据的下列分布:
假设我们估计知道某公司约有 16 个男性职员和 62 个女性职员,而且男女的吸烟比例 不同。经过加权后我们得到该公司吸烟的比例估计在 53%; 我们总是希望调查所得的估计值与已知的男性和女性数量比例相一致,当我们认为一个 人是否吸烟与他的性别之间可能存在相关性, 因此他们认为, 使用事后分层能够提高估计的 精度。 然而实际上,如果在调查的设计阶段就已经获得这些信息的话,就可以用性别来进行分层。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10