大数据环境下的综合布线技术探析(1)_数据分析师
随着移动互联网技术的不断发展,移动互联网用户发送和上传的数据量达到1.3exa bytes,相当于10的18方。Big Data“大数据”是继云计算、物联网之后TI 产业又一次颠覆性的技术变革。当今信息时代所产生的数据量已经大到无法用传统的工具进行采集、存储、管理与分析。全球产生的数据量, 仅在2011就达到1ZB,且根据预测,未来十年全球数据存储量将增长50倍。大数据不是云计算, 是云计算的灵魂和升级方向。
1 大数据时代网络挑战
全世界联网主机数中轴标是上升趋势,2007年全世界人均只有0.1个设备是联到网上的,到2013年人均7个。到2016年将每3分钟传送360万小时视频, 相当于全球已生产的全部电影。2010年在全球互联网流量中,美国是6337 PB/月,占全球31% ,中国占全球63%。1998年一个网民一个月消耗1兆流量,2003年数字到10兆,2008年一个月到l G的流量,到2014年一个网民一个月可能要到10G。
另外,物联网在越来越多的行业中得到了应用,“万物互联”是物联网的终极目标。这部分是数据流量绝对增长量。物联网的时代将是传感器自动不间断地巨传大量数据并通过网络存储在数据中心内,对网络与数据中心的存储量起到了推动型作用。
大数据与网络基础设施的发展是相互影响、制约或促进的,所有数据量的上升需要更大规模的数据中心与其相适应,布线系统作为数据中心内部连接与管理的基础设施是所有数据流通的基础,对于数据中心运行对大数据流的支持起了关键作用。布线系统作为搭建数据中心的基础物理平台之一。
2 标准化发展应对大数据
根据2012版本的《数据中心电信基础设施标准》TIA 942A对于虚拟化的网络架构基本没有涉及。基于当前网络技术日新月异的变化状况,云计算虚拟化的网络发展将是大型数据中心网格架构的重要发展趋势,采用无阻塞的交换矩阵的网络结构是从网络层面应对大数据时代的技术手段之一。为应对大数据的挑战,云计算虚拟化网络技术的应用是技术发展必然的趋势。
面临海量的数据存储用于数据处理,数据中心为了提高资源利用效率与数据分析计算能力,,将大量采用虚拟化云计算的技术,包括服务器虚拟化技术等。网络架构总体的趋势将采用大二层虚拟化的网络,核心层采用40G/100G,接入层采用10G 的方式基本已经成为网络升级的方向。虚拟矩阵的数据中心主干网络中, 更多地将从10G网络升级到40G/100G。IEEE 803.3ba于2001年已经正式颁布采用40G/ 100G的网络技术标准,,数据中心主干链路88%以上小于100m 的距离,,多模光纤0M3/0M4采用MTP与QS F P接口多通道并行传输的方式,基于其良好的性价比,被业界认为是数据中心主干链路应用的首选方案。
3 支持大数据网络物理层接口技术分析
当网络主干走向40G/100G 的高速网络时, 数据中心接入层设备与服务器网络接口从1000M 走向10G是必然趋势。过去接入层的网络速率在1000M及以下,采用铜缆RJ45的接口模式在整体市场中处于主导地位。而当网络上升到1G0 时,将有多种接口模型可供选择,当前10G接口类型较多,技术要求的差异较大。从10 G接口类型中,基于功耗、端口密度、支持距离等方面思考,笔者认为从长远来看CX4铜缆方案并不占有太大的优势。而其余四种类型,SFP十DAC 的10G无源铜缆、SFP十AOC 的10G 有源光缆、SFP十10GBaseE一SR的光缆、RJ45Base -T的铜缆的解决方案,各有优缺点,这里不详细阐述。各种10G接口技术都在进步,不同时期的优势点也有变化,至于何种技术在市场上能得到更多应用,仍需拭目以待。
4 传输介质的技术应用分析
数据中心跟传统大楼的布线不太一样。对于光纤来讲,其实已不单单满足于10M、40G、100G,标准IEEE802.3ba已经正式颁布,40G用到8芯光纤来传输数据,而100G则用到20 芯的光纤。IEEE工作组的步伐也并没有就此停住,在完成了802.3 ba后,正在做一个向下兼容的、从10G到100G 的光纤标准"、
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21