大数据如何建立企业竞争力与重塑竞争环境(1)_数据分析师
科技进步让各种先进的分析方法走入了寻常企业。“大数据”日益成为企业高管层津津乐道耳熟能详的字眼,但在把握大数据所蕴涵的商机方面,大多数企业的努力还 仅仅停留于“表面功夫”。 在他们眼中,大数据等同于“3V”:数量(volume)、多样性(variety)、速度(velocity),却常常忘了关注另一个最重要的“V”– 价值(value)。对全球企业开展了深入的研究,分析了大量成功与失败案例,从中总结出把握大数据机会的五个重要路径以及企业起步可采取的三个步骤。
如何定义大数据
我 们将以北美一家零售商的故事来阐述大数据的含义。该公司在北美的销售活动非常活跃,销售的产品总数达到3万多种,不仅如此,产品的价格也随地区和市场条件 而异。最让高管头疼的是定价促销策略。由于产品种类繁多,成本的变化异常频繁,一年之中,变化可达四次之多。结果就是,这家零售商每年的调价次数高达12 万次。处理定价促销的复杂之处,是它不只是受成本驱动,还有宏观经济、市场竞争、品牌定位、消费者心态等所影响。由于定价直接影响公司的利润率,高管决心接下挑战,组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高了定价的准确度和响应速度。定价团队的分析其实就是围绕着大数据的三个关键维度上:
•数量(Volume):团队需要分析海量信息。他们收集了上千万的消费者的购买记录,透过从客户不同维度分析,希望尽可能微分客户,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。
•多样性(Variety):团队除了分析了购买记录这种结构化的数据外,他们也非常聪明的利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。
•速度(Velocity):为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。
透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。
这个故事跟BCG对大数据的定义也是相当吻合,重点都是放在最终的价值创造。我们对大数据的定义是:“在可控的经济成本下,企业可获取、分析并解读日益庞大且复杂的数据,让企业在价值创造方面实现跨越式的转变。"
我们也可以换一个角度来看看大数据的演变,那就是科技进步所推动的数据多样化和复杂化。在 很久以前,企业只会在他们的企业资源规划(ERP)系统中记录公司的采购和订单数据。 随着”以客户为中心“经营理念的日渐兴起,客户关系管理(CRM)系统应运而生,帮助企业收集客户的采购行为和偏好。此后,互联网时代的蓬勃发展为网络活 动和网络交易提供了足够的动力;互联网这一新的渠道,为企业带来了更多元化的客户数据。现在,随着移动装置、社交媒体、云服务以及“物联网”的大面积发 展,又涌现出了越来越多的原始数据和非结构化数据可供收集,包括定位数据、社交数据以及行为数据。可以说,大数据就是交易类、互动类以及观察类数据的总和。
大数据行业的发展趋势
目前,大数据行业可谓各类机构众多,既有基础设施、数据库以及分析技术等下游机构,也有应用类、商业情报等上游机构。
估计2012年大数据行业总值预计达100亿美元,年均增速约为40%。到2015年,这一市场的规模将扩大至270亿美元。硬件在大数据市场仍然占据最大的份额(35%),而软件企业和实施机构(如:系统集成商)也在快速成长中。
未 来,大数据行业将经历快速整合。大家是否还记得网络时代(dot-com)各类互联网咨询公司层出不穷的盛况?其中九成企业在短短数年内就夭折殆尽。相同 的剧情也有可能在所有大数据咨询机构身上重演。对企业而言,起步较早的机构可以获取客户洞察,取得先发优势。然而,就像是一场军备竞赛 – 用不了多久,大数据能力会成为所有企业的必备能力。这时候,整个行业又将站回到同一条起跑线上。
商机在哪里?
大数据领域的价值创造机会因行业而异。在零售业,先进的分析方法往往与战略相得益彰,涵盖促销增效、定价、门店选址、市场营销等多个领域。而在能源行业,大 数据的价值创造重点更体现在智能电表数据的使用以及对实体资产(如设备和工厂)的优化上。在金融服务业,大数据的应用则往往体现在风险评分、动态定价以及 为ATM和分行网点寻找最佳地点等方面。而在保险业,大数据的价值可能体现在防范理赔欺诈、优化保险金给付以及跟踪驾驶行为等方面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31