百度开放大数据预测能力:准确率超80%促行业发展
最近一个月以来,中国股市一片大好,一部分股民大呼过瘾,但也有一部分股民唉声叹气:如果能早一些预测到该多好?其实不仅是对股市,对于企业运营来说,很多人也希望能有一项业务可以准确预测未来一段时间的行业表现以及发展趋势,因为这背后所带来的的商业价值将无法估量。
今年9月,百度就针对这些有预知未来愿望的企业,推出了大数据预测开放平台,提供平台化、公开化的预测服务。企业用户只需提供预测目标的基本信息,包括过去一段时间的历史数据、所属行业、预测目标地区及关键词等,百度就会利用自身的大数据收集和分析处理能力,从搜索指数、微博热度、LBS人流量分析、新闻热度等维度的数据中挖掘出相关的价值数据,并以此建立大数据预测模型,最终实现对目标未来一段时间发展趋势的预测。经过三个多月不同行业、企业用户的实践证明,百度预测开放平台在销量、订单量及话务量等预测准确率保持在80%以上,已日益成为众多企业不可或缺的业务预测帮手。
(百度预测开放平台)
预测准确率超80%,帮助企业更好地进行运维管理
百度覆盖中国网民比例达95%,每天响应60亿次搜索请求,每个搜索的背后都代表着用户行为及消费意愿。通过百度大数据预测开放平台,相关企业可以更加精准地预测销量、订单量、话务量等数据,更准确把握市场,提升企业工作效率及服务水平并节省成本。
根据百度大数据部门相关负责人介绍,百度预测开放平台对于大多数面向用户的销售企业都非常适用,在一系列内外部测试及实际使用中,其预测准确率保持在80%以上。从现在的情况来看,一些独立的电商网站、平台型电商上的店铺、3C数码厂商、家电企业、酒店、景区、餐饮等企业在使用中,得到了非常好的效果。这些企业可以根据百度提供的预测量来安排备货、库存,甚至是供应链采购,能有效避免出现库存积压或脱销状况,由此可降低企业的经营成本,将有限的资金用到“刀刃”上。例如电商类企业,利用百度预测开放平台预估的订单量等数据,可解决过去让电商网站最为头疼的库存占款问题,清库存甩货等现象也随之降低。
百度预测开放平台表现不俗的领域还有呼叫中心,例如通信公司客服中心、银行信用卡客服中心、物流公司客服中心、大型电商网站客服中心等等。对于有“话务量”需求的400企业来说,“排班”是一个关键而令人迷惘的环节,一般需要主管人员对基准呼叫量、人员产能、人员配置进行综合的测算,综合得出合理的排班计划。据某呼叫中心主管介绍,“话务量”测算一般可采用每月万用户服务请求数来估算,或细化到某类业务的万用户服务请求数,累加后乘以相应的增长系数。而在测算后的实际“排班”中,不仅要考虑话务因素,还要考虑呼叫中心所在的地理位置,上班通勤方式、食堂开放时间和宿舍配备情况等。目前,测算工作除了依靠人工凭经验预估以外,行业内还大多利用百度预测开放平台进行话务量的预测工作,可以有效辅助话务中心排班,合理进行人力安排,同时提升客户服务体验。
低门槛接入 大数据预测引领未来商业规划趋势
近几年来,大数据是一个谈论最多的热门话题,但大数据究竟能给企业带来哪些价值,一直缺乏有效、可复制的样本。不少企业在IT采购上投入了大量的资金,结果给业务带来帮助微乎其微。这也是多数企业的痛点。业界人士表示,百度预测开放平台的最大价值就是将预测能力彻底开放,并实现了多行业的普适性,通过简单的操作、流程化模式,让企业预测业务量就像使用水电、自来水一样方便。
(百度预测开放平台新建任务界面)
一位刚刚使用百度预测开放平台的企业人士表示,过去大数据预测很神秘,给企业带来了距离感,百度预测开放平台操作方式简单便捷,只要上传一段历史时序的数据,填写行业、地域、关键词信息,提交预测任务,平台就能自动结合相关信息分析挖掘、建模,给出未来
一段时间的预测结果,的确大大降低了企业的应用门槛。据悉,百度预测开放平台还提供API的调用能力,帮助有需求的企业多样化登录,这也简化了操作成本,企业可集成到业务流程中去。百度相关负责人表示,预测开放平台适用更多行业、企业,未来将持续优化这一平台,让更多企业享受到大数据预测的能力,给企业带来切实利益。
数据分析咨询请扫描二维码
“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21