从提高游戏的使用率到提高转化率带来更高收入,手游数据是可以帮助开发商做出更好决策的工具,跟着感觉走有时候可能会有用,但如果有了准确的数据分析,你可能会更成功。
知识就是力量,这对于手游开发商们来说尤其重要。有数据和分析情况下做出的决定总会比毫无了解好的多。通过数据分析,你可以清晰的看到自己手游的表现,也可以知道如何增加游戏的价值并且能提前看到未来发展中的挑战。
以下是手游营销平台Leadbolt公司CEO Dale Carr给出的7个方法,可以通过数据分析帮助手游开发商们提高用户参与度、增加收入并且帮助你的手游成功:
1.节约时间和资源
开发商们一定要知道玩家们最常使用的是哪些功能、以及这些功能被使用的频率,因为你可以通过专注研发和分析让游戏变得更优秀,让你把时间和资源用在最合适的地方。
一个优秀的分析工具可以帮助你追踪特定的用户行为,每一次用户在游戏中使用特定功能的习惯都可以被追踪到。如果你可以把这些数据按照特定的类别统计分析,比如玩家们在游戏中购买武器的次数、或者说在特定日期、周或者长期之内某些功能被使用频率。如果这些数据显示,没有人使用某一个功能,你在未来的研发中就可以避免做无用功了。
2.把游戏做到易于上手
用户量:要知道你的游戏是否易于上手,可以从用户体验的不同阶段看出来。比如,如果你的游戏中,玩家们还没有完成关卡就离开了游戏,那么你就可以通过玩家们离开游戏的具体原因。一旦确定了问题的来源,比如特定的手游设备上有BUG而不能完成关卡,那么这个问题就好解决了。手游分析数据的使用可以让开发商们很轻易的解决一些游戏中的问题,带来优秀的用户体验,这样就可以提高用户的参与度。
用户参与度:这个数据也可以了解你的游戏难度做的是否恰当。让用户下载游戏是一回事,但他们是否会经常玩,却是另外一回事。有了手游数据分析,你可以追踪用户的使用频率,还可以了解他们每次的游戏时长,这个数据可以清楚的告诉你所做的决定是否正确,尤其是在游戏设计和功能方面。
3.追踪ROI 知道谁是VIP
有句话说的好,不会花钱的人不会挣钱。这句话的意思是,你要把资金和资源用在合适的地方才能够带来最大的ROI。如果你一直都不优化自己的市场营销渠道,那么你很可能不必要的浪费了很多资金。以下是追踪手游ROI的一些基本过程:
安装追踪:在玩家们下载你的游戏之前,你一定想知道你的用户从哪儿来。换句话说,你想要知道自己的潜在用户来自哪个渠道,哪些广告网络可以给你带来最多的新用户。更进一步的话,了解哪个渠道带来的用户LTV最高,你就可以知道哪些渠道的用户是最有价值的。
研究结果:通过对市场营销渠道的分类和追踪,你可以找出哪些活动在哪个渠道表现最好,哪些可以带来最多的收入,对于收益较低的渠道,你就可以节约一部分开支。了解用户的LTV是追踪ROI最佳的方式之一,这听起来可能比较浅显,但有些用户对于你来说是非常重要的(VIP)。了解哪些用户消费最多,或者了解哪些用户忠实度最高,这样你可以使用不同的市场营销方式提高他们的参与度和LTV。
4.下载量和使用率
对于手游开发商们来说,了解游戏的下载量与使用率之间的差异是非常重要的。在下载游戏的用户中,只有一部分人会打开并经常使用,这也是激励型下载措施并非最佳方案的原因之一,虽然激励型方式可以增加你的游戏下载量,但如果用户只是下载了游戏,或者只进入过一次游戏,那很可能他们对你的游戏没有兴趣,这样的话,你的平均用户LTV就会大幅下滑。
5.做好市场营销策略
不要跟着感觉走。要做一个带来最佳ROI的市场营销策略,你需要借助可靠的数据、精确的分析,这样可以帮助你制定清晰的目标,如果你自己都不知道用户使用哪个功能最多,不了解哪些数据对你最有价值,那么你再多的市场营销费用也很可能是打水漂。
6.检测并解决特定设备上的问题
如果可以实现只提供一个游戏版本就可以完美适配所有的机型,让用户们都有同样优秀的体验,手游开发商们就不会有这么多的问题,但这种情况从来不会发生,而且也是所有开发商都心知肚明的。然而,开发商们并非无能为力,我们可以找到发生问题的设备,找到哪些功能受到了影响,提供报错功能是非常重要的。
7.提高付费转化率
了解哪些是玩家们消费时考虑最主要的因素,可以帮助你提高收入表现。虽然推出一个伟大的手游可以让你非常出名,但只有获得了收入,你才可能把游戏做到更好,更不用说养家糊口了。通过对单个用户的游戏行为和IAP活动追踪,你可以找到玩家们在哪些方面消费最多,哪些促销活动可以带来销售收入的提高,诸如此类。
从提高游戏的使用率到提高转化率带来更高收入,手游数据是可以帮助开发商做出更好决策的工具,跟着感觉走有时候可能会有用,但如果有了准确的数据分析,你可能会更成功。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21