实现挖掘大数据价值的三大因素_数据分析师
很多公司都在探索如何挖掘大数据的价值,但有一类公司不得不擅长做这项工作,那就是:数据分析提供商。这些公司的商业模式决定了其必须能够有效、持续地提供客户愿意买单的数据产品和服务。
下面将分享一家伟大的数据分析提供商- ComScore,如何通过3个关键因素(一个便捷、可扩展的平台,一支深悟数据分析的员工团队,以及对客户的深刻理解)来实现对大数据价值的挖掘。
1个便捷、可扩展的数据平台
ComScore提供服务的基础是14个PB的多种来源在线数据,这些数据实时地从全球范围收集,这就是公司现在称之为大数据的东西。
数据的来源有4个主要渠道。第一个来源是样本库数据,来自200万个互联网用户,美国境内和境外用户各有100万人。样本库成员允许ComScore秘密地采集用户行为和人口特征。人口调查数据是第二个来源,从获准安放在大约90%的美国数字媒体机构百强公司里面的传感器获得数据。第三个数据来源是采用专属调查的方式,从样本库成员获得的认知数据。第四个来源是从战略合作伙伴获得的数据。比如,ComScore采用会员卡店内购买数据,来帮助客户将在线广告活动与线下商店购买行为紧密结合在一起。
在上世纪90年代后期,可管理ComScore数据工厂的主流商业技术解决方案还没有出现。ComScore就开发了一个高效、获专利保护的技术平台来存储和管理大数据。
到2013年,技术团队已经将平台从一个专有的解决方案进化为一种面向服务的架构,支持在MapR的Hadoop和Pivotal Greenplum数据库上运行的3个关键系统,每个系统都有独立的工作任务和扩展需求。ComScore需要不间断地呆在平台的顶端,在过去的12个月里,数据量大约增长了80%。
一支深悟数据分析的员工团队
ComScore依赖它出众的员工来掌握大数据的艺术和科学。它已经成长为一支1200人的全球团队,每个人都拥有不同水平的"数据科学家"能力。为了跟上公司成长步伐而选择和开发这些员工,公司领导实施了许多人才管理战略。
其中一项战略是:首先从大学的商学院和数学专业招聘分析人才,并给她(他)们提供更多的分析培训。ComScore有一个正在进行的公司内部范围培训项目-ComS core大学,大部分员工都参加。
另一项实践是旨在培养一支领域广泛、深悟数据分析的工作团队,根据员工的不同技能水平在整个公司成立不同的小组,但与此同时,员工必须具备足以确保这些小组能顺利沟通的基本技能。而这些需要沟通的团队通常都在同一个地方办公。
公司领导层还利用矩阵式组织架构,将具备不同技能组合的人才结合在一起。比如,ComScore同时运行了好几个并列的团队,每支团队都有一个商业产品经理来理解产品的开发路线图,以及分析师们来监控数据质量和分析方法论。这种方式被认为对产品开发流程尤为重要。
对客户的深刻理解获得行动的洞察力
ComScore每天发布大约15万份在线报告。其中的挑战在于如何传播优秀的报告,让客户不仅能获取洞察力,而且还能将这种洞察力与工作任务紧密结合。当客户将所获得的洞察力付诸行动时,比如改变一次广告活动的策略或定位一个新的细分客户群,她们可以从ComScore的产品和服务中取得价值。但是作为一个数据分析提供商,ComScore对于客户使用数据的方式缺乏控制力。
ComScore能够控制的是它自己对客户需求的理解。该公司致力于在专业知识领域深度挖掘,并理解其客户想要解决的难题。具备了这些知识之后,ComScore就使大数据变得"可消费",并且可以积极主动地帮助客户识别哪些是可付诸行动的洞察力。不得不承认,数据可以在短时间内压倒一切,激励客户聚焦于解决一些关键问题,然后反复适用。
ComScore给它的客户提供拥有图形界面、整合可视化和图表呈现的软件工具;通过向导和模板报告的大量使用来支持客户的自助服务;当需要即时决策时,通过控制面板提供数据的实时访问;以及创建知识门户来支持知识的分享。更进一步,公司还专门成立了一个组织单位,来为其产品和服务的可消费性提供支持。
(图为,ComScore的典型客户)
一切都归于数据
在大数据的空间领域,必须不断地适应才能跟上其迅猛发展。
多年以前,ComScore还仅仅期望测量挂有客户广告的网页的访问者数量;今天,它则必须报告这个广告是否被真正看过。在早期,公司客户对非美国数据还没有多大兴趣;全球化的发展催生了对ComScore覆盖全球数据的市场需求。
此外,ComScore还需要对技术相关的变化保持跟进。比如,客户可能会需要分析类似来自视频和智能手机的数据流这样的突发性数据类型。另一个重要的变化例子是,使用大量不同设备访问在线内容的用户数在持续增长。这样,公司客户就需要能识别跨多个设备的独立用户。
ComScore的平台、人才和深刻客户理解赋予公司足够的能量,来应对大数据产业环境的风云变幻。其便捷、可扩展的数据平台使得ComScore能够适应数据量的迅速增长,并获取新的数据类型。交叉组合的团队和技能,与拥有深厚分析技能的工作团队相结合,使它能够顺畅地适应需求的变化。对客户使用分析工具的良好培训,允许公司能够预期未来发展趋势,并据此调整其产品和服务。CISR(MIT信息系统研究中心)相信,对借助大数据发展自己感兴趣的公司可以考虑采用ComScore的方法,以获取良好的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31