P2P公司用大数据扩大企业边界_数据分析师
2014年,互联网金融界最火的名词非P2P莫属,伴随着平台数量和类型的快速增长,业界对于P2P业务未来的成长性和发展性,也不禁产生了更多的期待。“大数据”一词,近两年与P2P行业联系紧密,前沿的互联网科技不仅为金融行业带来了更多活力,也帮助P2P行业实现快速成长。
实际上,互联网大数据技术对于P2P公司扩张企业边界,同样具有重要意义。 人言“它山之石可以攻玉”,阿里今年“双十一”物流配送体系在数据的流转和分享模式方面创新,或许可以给我们一些启发。
为应对飙升的物流运量,“双十一”期间,阿里旗下菜鸟网络通过大数据技术,精确计算出了各家快递公司每条线路每天的包裹量,在交易发生之前,很多货物都已能够提前下沉到客户附近的网点,从而极大提升了物流效率。而经过实际产生的数据对比,该系统提供的预测数据准确度高达90%左右。
阿里对于“大数据”技术的应用,不仅实现了精确预估“用户行为”,更在业务模式上实现了颠覆式创新,即在交易产生之前便已然准备好商品和服务,在未来,则更有可能创造出“用户需求”,通过利用大数据技术深入挖掘用户需求,提前为其量身打造产品与服务,扩大了业务和企业边界。
以往对企业边界的讨论,都会参考威廉姆森和科斯的交易成本理论,按照科斯的理论,企业边界决定于交易成本与管理费用的对比。但是在互联网时代,一个企业的业务类型和企业边界,似乎更决定于数据能够流转到和真正起效的边界。那么对P2P行业而言,大数据又能从何种角度帮助P2P公司进行“开疆扩土”呢?
首先,在信审风控方面,互联网大数据技术让信审流程的准确性,高效性,透明度都得到了极大提升。作为信息交流的平台,对借款人资格的审核和把关,也就是进行信用审核,是P2P平台的重要职责之一。P2P行业对借款人信息考察的维度主要包括个人基本信息、教育及技能信息、工作信息、资产信息以及信用信息等,随着借款人数量的增多,身份类型的丰富,变量也变得越来越多,这就要求平台具备持续搜集数据,高效处理数据,以及不断完善的信审模型的能力。
互联网大数据技术的进步,让P2P平台有能力通过互联网抓取更为丰富和精确的信息,用户在互联网上的社交行为信息,包括其在微博、微信、论坛的活跃程度,发言数量,都可以被采集并成为个人信用评估的重要参考,这种通过数据系统建立严密高效的信审模型,是以往的线下人工审核模式所无法企及的。
近期,宜信宜人贷推出了“极速模式”借款服务,通过对互联网大数据技术的准确把控,宜信宜人贷建立了一套高效运行的大数据信审系统,借款人通过“极速模式”提交借款申请,在10分钟内就能快速完成审核。宜信宜人贷“极速模式”刷新了业内借款服务的新水平,在借款服务领域实现了极大的突破。
不断分析和挖掘用户需求,是企业进行产品和服务创新的重要支撑,传统的线下调研模式,要耗费大量的人力物力,而通过大数据来积累和分析用户的习惯和偏好,按照用户的实际需求对产品和服务进行改进和优化,能够将生产方与用户紧密联系起来。数据将产品和服务背后的用户变得生动鲜活,用户在哪里?喜欢什么?需要什么?对P2P行业而言,在业务高度同质化的现状下,不断寻找业务创新点显得尤为重要,显然,通过大数据技术的协助,P2P公司能够得到用户的即时反馈,从而不断激发对于产品和服务的创新思考。
另一方面,P2P行业目前在垂直领域的竞争还处于“蓝海”阶段,如宜信宜人贷针对程序员群体的借款服务“码上贷”,等针对细分人群定制的服务,还尚不算多,针对细分人群的个性化服务将成为未来行业的发展趋势。通过大数据技术对人群特征和需求进行搜集、描写和归纳,能够让P2P平台更快找准产品和服务定位,从而丰富业务种类,从而扩大公司边界。
更创新的商务模式,更高效的业务流程,更具前瞻性和个性的产品和服务永远是所有企业的追求,P2P行业的发展也依托于每一家平台对自身产品和服务的不断创新,以及对于行业内涵的不断扩展,如何在快速变化的时代,找到自己的位置,在站稳脚跟的基础上稳健扩张企业边界,是每一个P2P平台都应该思考的问题。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21