数据分析工具入门:左手SPSS,右手EXCEL_数据分析师
产品经理要会数据分析,大家基本都可以达成共识,如何做数据分析,可以写好几本书,这里从工具学习和使用角度说下如何进行数据分析入门。
通常来讲,二八原则在多个范畴适用,同样,在产品经理当中,相信80%的人在用EXCEL做数据分析,能满足80%的分析需求。
标题为右手EXCEL,因为80%的人右手比左手灵活,用工具也这样,先把常用的学会就好,至少一年级产品经理,赶快把EXCEL好好学习下。我在面试产品运营同学的时候,遇到说自己EXCEL用的好的,通常会问是使用哪个版本?否知道EXCEL最大可以处理多少条数据?行数与列数的极限分别是多少?常用哪些功能?哪些函数?举一个工作案例说说如何用EXCEL。
左手SPSS,为何是SPSS,因为从我个人角度出发,EXCEL+SPSS基本可以解决产品经理进行数据分析中的95%的问题,二年级产品经理,可以开始学习SPSS的数据分析。其实SPSS入门非常容易,学习能力强的,工作第一年,都可以开始初步学习了,而且有必要提前学习一些统计学基础知识。
我从什么时候开始学习SPSS?——这里感谢下我的大学计算机老师韦老师,1995年教我们学习计算机,学习SPSS数据统计分析,当时还是DOS版本SPSS/PC+,其实韦老师是北师大的心理学博士,不少人很奇怪我大学学习的是教育学和心理学,咋这么喜欢搞数据,韦老师是我的启蒙老师,学心理学,咋能不搞数据分析呢。还有当时的统计学课程梁老师,梁老师很漂亮,增强了我学习统计学的浓厚兴趣。我的本科毕业论文指导老师余欣欣,也是心理学博士,当时带我们做学习策略实验研究的课题,算是我完整参与的第一个研究项目,也是数据分析与挖掘的一次实战应用。
今天说下SPSS,先看两段介绍,分别来自百度百科、维基百科,两端文字介绍,个人认为维基百科的更加清晰。
SPSS——百度百科
SPSS是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生Norman H. Nie、C. Hadlai (Tex) Hull 和 Dale H. Bent于1968年研究开发成功,同时成立了SPSS公司,并于1975年成立法人组织、在芝加哥组建了SPSS总部。1984年SPSS总部首先推出了世界上第一个统计分析软件微机版本SPSS/PC+,开创了SPSS微机系列产品的开发方向,极大地扩充了它的应用范围,并使其能很快地应用于自然科学、技术科学、社会科学的各个领域。世界上许多有影响的报刊杂志纷纷就SPSS的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价。
SPSS——维基百科
SPSS原名社会科学统计包(英语 Statistical Package for the Social Sciences),由于用户早已不限于社会科学界,2000年根据缩写改为“SPSS”。
1968年,美国斯坦福大学的3位研究生开发出最早的SPSS软件,当时主要面向中小型计算机和企业用户,产品统称SPSSx版。1975年,芝加哥成立了SPSS公司。1984年,SPSS公司首先推出了世界上第一个可以在DOS上运行的统计分析软件的PC版本,即SPSS/PC+版。后来又相继推出了Windows和Mac OS X等操作系统上的版本,并不断扩展软件的功能相关服务,形成了目前SPSS的基本面貌。2008年9月15日,SPSS 17.0 for Windows版发布。2009年7月28日,SPSS公司发表PASW(Predictive Analytics Suite Workstation)18.0,同时该公司也被IBM收购。
SPSS 18.0由17个功能模组组成:
上面的17个名词,看着很难的样子,一堆的名词,根据产品经理实际工作用的应用,归纳了一下,P2级别到P3级别产品经理学习如下功能就差不多可以解决日常工作中的90%数据分析与挖掘问题,哪些知识点呢,见下面的图。
SPSS目前的最新版本是SPSS Statistics 21.0。这里推荐两本比较实用的书籍,作者分别是薛薇和张文彤,另外张文彤在2004年出的初级版和高级版据说被很多大学采用作为教材。
学习这类工具的一大要点就是实践应用,看书,很快看完了,但没有实践的应用难以熟练,纸上得来终觉浅。学习工具,其实不难,难的是对产品数据的理解和应用,只懂分析工具,不了解产品与用户,是难以深入的,甚至会走入误区。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20