大数据应用时代来袭 SaaS走向没落_数据分析师
随着大量的信息涌入互联网——90%的互联网是过去两年建立起来的——互联网公司正在想方设法去熟悉并利用大数据来推动他们的业务。正如SaaS和云技术一样完全变革了企业的运作方式一样,大数据应用(BDA)也同样可以。 BDA是基于网络的应用,它通过解释和使用大量的企业和网络规模的数据,为他们的用户提供更智能的结果。0
但真正的问题是:假如底层的数据结构使用Hadoop和noSQL会是什么样的一个情况?没有一家大公司的CEO会为可扩展数据结构带来的价值主张而感到兴奋不已,BDA就是在这样的背景下应运而生的。BDA不只是重新包装你的数据,让界面看起来比较酷炫或者使数据扩展性的效率得到提高,它们是利用全世界的数据,给你提供更好的结果——比如说带来更多的收入。0
SaaS对于企业软件来说是一种不同的交付模式:它允许即时注册,极大地降低整合成本,并允许用户购买前试用,而且具有良好的可扩展性。Salesforce.com通过转变CRM行业开启了云技术变革,随即被很多各种类型的企业软件争相效仿,如为HR提供服务的Taleo/Successfactors , 提供ERP服务的Netsuite公司以及提供网站数据分析的Omniture 公司等。SaaS增加了商业软件市场规模的同时为大企业带来了更好的投资回报率。但它忽略了一件重要的事情——它并没有改变核心应用软件的基本功能。 Salesforce没有添加企业面对面的Siebel CRM功能—— 它只是让人更容易采纳并且维护费用较低而已。0
Google、亚马逊、Facebook等公司对软件消费方的大数据有很好的理解。亚马逊CTO Werner Vogels最近在CeBIT(德国汉诺威国际信息及通信技术博览会)上发表专题演讲时指出,失误出现主要是因为没有足够的数据备份来提供补救措施。随着更多的用户和数据加入核心引擎的应用程序,所有这些让软件变得更加难以应付,显得更为智能且更有价值。现在,BDA企业正在不断兴起,并且它们会是未来的发展趋势,以下就是些很好的例子:0
LinkedIn是一家专门提供招募人才软件市场的BDA公司。LinkedIn不是让你把联系人加入单独的通讯录,而是将这些联系人全部联系在一起,让用户与用户、用户和有关键竞争力的招聘者之间建立起联系。每个用户加入LinkedIn,LinkedIn的BDA存储栈都会接受到信号,从而方便招聘者掌握他们的所有资料,而不仅仅是单个用户的相对分散的资料。在资源共享的情况下,小型的专业的招聘公司就可以与那些大的猎头公司进行竞争。
Bazaarvoice是一家专注社会化共享的BDA公司。他们在网络上搜集客户评论,然后将这些信息提供给很多网站。传统的基于SaaS的方法存在这样一个弊端:它们只是在单独的网站上搜集和发布客户评论。相反,Bazaarvoice从整个网络进行信息搜集,从而确保只要客户的网站出现一款新的产品,即时的评论就会呈现给你,这样Bazaarvoice就为所有Amazon.com销售者提供可比较的评论数据库。
我们自己的BloomReach公司,是一家专注市场营销的BDA公司。我们仅通过对网站进行分析就可以为网站所有者找出相关遗漏信息,而这些信息可以为网站所有者带来可观的利润。我们分析全网络用户的需求,针对特定的用户在整个网络内建立语义模型,然后根据那些与用户最相关的内同不断增加网点。Adobe旗下的Omniture公司在SaaS的应用软件中包装你的数据,为你的企业提供营销建议,而BloomReach则是先对网站的数据进行分析,然后设法为该网站带来更多的流量,从而给他们的客户带来更多的利润。
事实上,BDA本身就好于SaaS,因为它们不仅具备SaaS交付模式的所有好处,而且还有搜集数据过程所带来的网络效应。随着时间的推移,独特的数据能够为用户和应用提供商带来网络效应,是一笔宝贵的财富。目前,因为企业外部的数据要多于企业内部,仅仅因为数据分析和工作流程的需要,就对企业内部数据进行重新包装的想法看起来显得有点古怪。0
BDA公司创造价值的方式与SaaS公司大相径庭。BDA公司是由一群在大系统方面有着丰富经验的人建立起来的,他们在机器学习和数据挖掘发面具有很深的造诣,比如说我的合伙人Ashutosh Garg就是这样的人。虽然BAD和SaaS的目标都是针对企业内部,但BAD的投资回报率要高于SaaS,因为每个客户会给引擎增添数据,反过来这些数据又会重新为这些客户所用,所谓取之于民,用之于民。目前市场上对SaaS公司有三个评判指标:用户的生命周期价值,客户开发成本,以及增长率。毫无疑问大多数SaaS公司具有很高的增长率,但相比之下BAD公司在生命周期价值和开发客户成本方面却更胜一筹。0
BDA的革命才刚刚开始,相信将来它会带来更加广泛的影响。如果我们要再次建立CRM,我们将不只是跟踪销售人员的效率,我们会建议你如何利用整个行业的数据与你的对手竞争。如果我们要建立市场自动化营销软件(如Marketo,Eloqua),我们将不只是捕捉和培育客户所产生的线索,我们会在整个网络中去发现并为他们吸引更多的线索。如果我们建立一个财务应用软件,它将不只是将追踪贵公司的财务状况,而且与你同类的上市公司进行对比,你可以衡量自己的现状来决定采取最佳措施。0
像任何新技术一样,新事物的出现并不意味着旧事物的立即消亡,这需要一个更替的过程。虽然Oracle公司和SAP公司仍是大公司,但Salesforce.com是一个有着20亿美元市值的庞然大物,绝对不可小觑。我们有理由相信未来是属于BDA的,是时候对SaaS说再见并且迎接BDA的到来了。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21