谈谈网络时代大数据及分析起诉韩寒小实例
随着阿里巴巴的上市,马云成为中国首富,猫眼看人里关于阿里巴巴的大数据分析的内容层出不穷。大多是用耸人听闻的言论,指责阿里巴巴境外上市导致大数据外泄,影响国家安全,对中国经济运行造成不可估量的损失。
很多猫友从以往的常识和逻辑方面判断能够得出阿里巴巴的大数据并不影响国家安全的结论,但是,对于大数据概念认知比较少,评论起来无从入手。
本文希望用最朴实的语言描述大数据,让大家能对大数据有基本认识。同时,后面附大数据统计的应用实例:即通过大数据统计分析网友司马3忌对韩寒起诉的影响。
所谓数据统计,就是用统计学的方法分析概率和趋势
由于传统方法无法对每一个终端样本详细取样,导致很多经济社会数据只能通过抽样调查统计。
例如,收视率调查。电视台无法得到每户家庭的收看节目的数据,所以只能抽样调查。
在网络时代,每一个网络服务提供商不需要做抽样调查,而是建立庞大的数据库,记录一切用户的行为特征,用这些特征作为数据基础。这就是大数据,用不同的方式对这些数据进行提取、整理、分析的手段就是大数据分析。
最简单的例子就是你打开任何一款炒股软件,它都是基于大数据的。每只股票从上市起所有相关数字全部被精准记录,从无遗漏。
阿里巴巴的大数据是否会影响国家安全?
个人认为不会,并且大数据无法隐藏。原因如下:
1.阿里巴巴的大数据是每种产品的购买记录,只说明产品的销量趋势。
2.每个公司对自己的大数据是企业的核心资产,如美国任何投资者、美国国务院希望获得阿里巴巴的大数据,也需要通过法院的批文,即使拿到,企业也有权拒绝。美国国务院屡次索要用户资料以便反恐需要都被苹果拒绝。
3.大数据本身就没有办法隐藏,如阿里巴巴的产品销售情况是在每一个商品的展示页面清楚明白的呈现出来。只要会最简单的网络及编程技术,都可以编写软件,借助大型服务器矩阵,放出无数爬虫,对每个页面进行信息提取和整理,得到大数据。
举个例子:比如如果想获得猫眼看人的大数据,用20m光纤宽带约2天即可完成对整个论坛数据的镜像保存。
4.如中国政府认为被美国搜集了大数据,一样可以如前面所述,通过对美国亚马逊、facebook、推特等进行爬虫提取搜集信息得到美国的大数据进行反制。
接下来通过大数据分析 司马三忌起诉韩寒,对韩寒的影响。
可以看到在10月09日,如红圈所示,媒体的报道从之前的一平如水,到出现一波小高潮。韩黑是否觉得有点小激动呢?
嘿嘿,上图只是9月12日到10月11日的。我们换个图,看看最近半年的大数据。
从这张图就可以看出,司马三忌起诉韩寒对媒体的影响力。
红圈1是韩寒的后会无期宣传期间的媒体报道力度。
红圈3是司马三忌起诉的媒体报道力度。
那么,红圈2比红圈3的媒体报道力度更大。
红圈2是9月11日的媒体报道,那一天韩寒发生了什么事呢?
看下面的图就一目了然了:
原来司马三忌起诉的影响力还不如韩寒老婆生二胎,哈哈!
以上就是对大数据的介绍和分析,以及实例应用。
大数据是个好东西,只要随便挖掘数据,就可以让我们对事物的认知突破我们自己视野的局限,起码不会表现的很愚昧了。
例如很多韩黑认为司马三忌起诉韩寒,会给韩寒带来致命打击。
但大数据就告诉我们,我们的认知是局限在只上猫眼,而大数据挖掘整个互联网,互联网的大部分媒体关注国民岳父老婆生二胎更多一点。
同样,大数据也可以有利于作出决策,试着证明如下:
如很多脑残黑粉所臆想的,关于韩寒代笔的舆论铺天盖地,对韩寒造成很大打击而事实上,通过挖掘数据以韩寒代笔和韩寒 进行分析可以看到, 韩寒代笔的关注度(蓝线)始终是一条接近X轴的直线这说明韩寒代笔的质疑的声音基本没有变化,不变高,也不变低这也揭示了孜孜不倦的揭示韩寒代笔的这部分声音没有减少,没有增加而韩寒的关注度随着他的动向呈现高低起伏。
取韩寒关注度最低的点,关注指数为5720,韩寒代笔的关注指数为132,占总关注比例为2.308%
假如你是韩寒,或者韩寒的经纪公司,那么,你会得出如下结论:
1.对韩寒代笔的关注度占的比例只有2%
2.质疑韩寒的人是坚决的、持之以恒的,但他们的质疑并没有扩散。
那么,你会做如下论断和决策:
1.你改变不了质疑韩寒的人,他们过去会,未来也会坚持咬定韩寒代笔。
2.上述人群不会变多、也不会变少。
3.你不需要试图去改变,因为你的试图的成本和收益不成正比。
4.最好的办法就是由这些人去质疑吧,因为他们只占2%,相比任何一个明星的anti-fan,都不多。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21