
数据挖掘成果固化_聚类分析_数据分析师
--聚类样本数据模拟
--BY:@ETwise
--输入表1:cluster_sample
--输入表2:cluster_center
--20141213
create table cluster_sample
(
serv_id NUMBER ,
label_1 number,
label_2 number,
label_3 number,
label_4 number
);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (1,2,3,4,5);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (2,2.5,4.2,4.2,5.2);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (3,3.2,4.1,2.3,5.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (4,1.1,1.2,2.2,3.2);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (5,1.7,1.75,1.35,4.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (6,1.5,1.2,0.62,3.38);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (7,1.3,0.65,-0.11,3);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (8,1.1,0.1,-0.84,2.62);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (9,0.9,-0.45,-1.57,2.24);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (11,0.5,-1.55,-3.03,1.48);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (12,0.3,-2.1,-3.76,1.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (13,0.1,-2.65,-4.49,0.72);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (14,-0.1,-3.2,-5.22,0.34);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (15,-0.3,-3.75,-5.95,-0.04);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (16,-0.5,-4.3,-6.68,-0.42);
--创建聚类分析所得到的中心点数据
create table cluster_center
(
row_1 number,
row_2 number,
row_3 number,
row_4 number,
type_id VARCHAR2(20) not null
);
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (0,0,0,0,'t1');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (1,1,1,1,'t2');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (2,2,2,2,'t3');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (3,3,3,3,'t4');
--聚类分析成果系统固化相关说明(K-means)
--第一步:对计算每个点与各个中心点的距离,并对应得到相应的分类type_id
select serv_id,
sqrt(power((label_1 - row_1), 2) + power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) + power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b
;
--第二步:使用开窗函数对各serv_id的各个中心点的距离进行升序排序,并打上相应的编号
select serv_id,
os,
row_number() over(partition by serv_id order by os asc) myrow_1,
type_id
from (select serv_id,
sqrt(power((label_1 - row_1), 2) +
power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) +
power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b)
;
--第三步:提取各个serv_id的最小距离数据,即可得到各个serv_id的类别
select *
from (select serv_id,
os,
row_number() over(partition by serv_id order by os asc) myrow_1,
type_id
from (select serv_id,
sqrt(power((label_1 - row_1), 2) +
power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) +
power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b))
where myrow_1 = 1
;
--其他办法:一步到位,直接代入中心点进行计算
select serv_id,
case
when least(os1, os2, os3, os4) = os1 then
't1'
when least(os1, os2, os3, os4) = os2 then
't2'
when least(os1, os2, os3, os4) = os3 then
't3'
when least(os1, os2, os3, os4) = os4 then
't4'
else
'-1'
end type_id
from (select serv_id,
sqrt(power((label_1 - 0), 2) + power((label_2 - 0), 2) +
power((label_3 - 0), 2) + power((label_4 - 0), 2)) os1,
sqrt(power((label_1 - 1), 2) + power((label_2 - 1), 2) +
power((label_3 - 1), 2) + power((label_4 - 1), 2)) os2,
sqrt(power((label_1 - 2), 2) + power((label_2 - 2), 2) +
power((label_3 - 2), 2) + power((label_4 - 2), 2)) os3,
sqrt(power((label_1 - 3), 2) + power((label_2 - 3), 2) +
power((label_3 - 3), 2) + power((label_4 - 3), 2)) os4
from cluster_sample t)
;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25