福特公司CEO Mark Fields在CES 2015展会上的主题演讲可谓光芒四射,他阐述了这家老牌汽车厂商如何在传统业务之外、以数据分析为契机取得一系列辉煌成就。换句话来说,福特为我们树立了良好的典型,证明了如今每一家企业都可以转化为技术厂商。
福特所面临的挑战在于通过多种不同类型的移动技术实验从车辆及人员身上收集数据,而后以此为基础考量怎样构建起新的业务方案。在可能性方面,Fields谈到了车辆质量、保险费用、汽车共享、交通分析以及社会问题等潜在发展方向。
“我们的路线图不能仅仅包含智能化汽车,还应该囊括智能化道路与智能化城市,”Fields指出。
福特公司CEO Fields探讨汽车制造商在大数据方面的实验性尝试福特公司公布的计划包括以下几点:
1. 短期之内利用25个实验性项目收集包括汽车共享、车辆情报、驾驶模式、停车应用以及保险等方面在内的各类数据。这些数据均来源于消费者及志愿者。福特公司希望能够以更具前瞻性的视角进行项目规划,而不仅满足于人们早已听说的机器人汽车等领域——虽然福特在这方面也制定了庞大的发展规划——这一切都将以数据作为基础以及资源。福特公司希望“在未来十年及其后构建起一套全新的交通模式与移动解决方案。”
2. 再来看需要实现的中期目标。以上述数据为起点,福特公司计划进一步扩大自动化汽车与相关应用程序的开发力度,从而保证其产品能够在多种交通系统之间应对自如。
3. 长期发展目标则是在城市移动技术领域占得优势地位。福特公司希望能够切实将各类交通系统加以整合,并将自动化功能推广至普通民众。不出意外,福特的实验项目选择了印度与中国作为实验地。福特的胜利则代表着新兴市场与中产阶级购车群体的崛起。
“此类信息能够帮助我们了解人们如何活动,并以绝大多数客户无法企及的宏观高度对其中的模式加以剖析,”Fields解释道。“今天的汽车已经能够产生大量数据,其每小时信息生成量就已经超过了25GB。”
围绕这一发展路线图的展开的多项实验为我们在多个方面带来值得关注的启示。在一项实验中,福特公司利用由车载传感装置收集到的数据研究总计两百名志愿员工的驾驶习惯,旨在对车辆作出针对性优化。另一项实验则是汇总大量评估数据,从而衡量驾驶者在长时间内的安全行驶状况、最终达到降低保险费用的目标。福特方面还从其它多种角度出发作出尝试,包括车辆共享以及便捷停车等等。
福特的尝试与努力能够带来以下收益:
• 在硬件产品制造商之外为福特谋得新的市场定位。
• 将该公司提升为一家服务供应商。
• 为将福特塑造成值得信赖的品牌构建良性发展循环。
• 随着时间推移带来额外营收资金流。也许福特能够凭借此类数据帮助保险企业对驾驶员的过往记录作出评估,而后者需要向福特方面支付数据使用费。
Fields强调称,福特公司的信息收集项目皆为可选方案,而参与其中的客户则能够持续通过相关数据获取到服务与实际收益。
但接下来才是最麻烦的问题……
我们不能指责福特的野心过于激进。这家汽车制造商领先于整个业界推出了其Sync系统,同时已经打造出了其信息系统的第三个版本。
但福特很明显并不满足于单纯将着眼点放在车辆范畴之内。福特公司希望成为汽车行业中的苹果,他们打算出售的并不仅仅是硬件或者软件,而是在硬件与软件之间所衍生出的集成化与智能化成果。
美中不足的是,福特公司需要面临的数据总量过于庞大、很可能出现超载状况。TechRepublic的Jason Hiner去年撰写了一篇题为《福特如何在转型为软件供应商的道路上前行》的文章。Hiner在文中写道:
福特在收集并处理大数据、并利用其增强自身业务方面一直走在整个行业的前沿。不过就目前来看,福特希望能够像谷歌、Amazon以及Facebook等纯技术厂商那样利用同样的方式运用大数据——旨在对用户体验进行简化与定制。
虽然福特有能力构建起数据分析所必需的后端系统以及工具,但真正的难点在于从问题惊人的信息池当中汇总出分析结论。福特需要对企业文化加以转变,并在招揽数据科学家人才的同时酝酿出潜在的新型解决方案。毕竟客户与车辆之间的关系是种内在的情绪化因素,此类人为因素的介入可能会让驾驶者与车辆产生意料之外的关联。
福特方面未来将很可能需要考量“富数据”在实验当中所扮演的重要角色。TechRepublic的Mary Shacklett在报道中表示:
富数据的深层次概念在于,我们并不能始终依靠数值计算与算法来对客户的全方位体验加以概括,或者是将任何人为活动乃至可能出现的意料外因素囊括在其中。
换句话来说,福特公司的既定目标实际上是在对人类行为进行统计与分析。人们在找不到停车位时,会做出怎样的反应?福特该如何对此类反应作出预计?而这些数据对于车辆设计工作又意味着什么?
总结陈词:福特公司面临的挑战是为大数据与分析同用户体验之间找到一条沟通的纽带。谷歌、Amazon乃至Facebook都在致力于改善用户体验,这项工作与汽车设计及制造可以说是风马牛不相及。考虑到这一点,我们期待看到福特在未来几年中会如何一步步推进自己的这项宏伟发展目标。
End.
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28