[数据分析师]_大数据还有不少潜能
近两年来,大数据被公众广泛讨论,甚至成为不少商家宣传营销的卖点。毋庸置疑,智能设备的发展和普及,使海量的数据采集成为可能。但大数据并不是单纯的“数据大”,它更蕴含着一种计算和思维方式的转变,想要发挥出大数据的洞察力,还面临着采集、管理、分析数据的挑战。这些障碍如何破除?大数据在未来将如何应用,能否创造出更大的价值?这些问题值得我们在大数据热中,做出冷静判断。
4月26日,清华大学成立“清华—青岛数据科学研究院”,同时召开大数据时代高端论坛。就在此前两天,百度在第四届技术开放日上,正式宣布对外开放大数据引擎,提供大数据存储、分析及挖掘的技术能力。大数据被学界纳入研究范畴,商家开放引擎,这是否意味着大数据应用进入了一个新阶段?
传统统计方法追求精确,大数据只预测宏观趋势
本是技术概念的大数据,如今越来越像一种营销手段。从汽车、化妆品到体育,在营销人员口中,似乎所有行业都可以借助大数据,精确定位、找到消费者,预测趋势、赢得未来。
中国人民大学新闻学院教授喻国明认为,目前从国内的情况看,真正运用大数据分析成功的案例其实不多,很多公司都是将大数据作为一个营销噱头,所做的分析也主要是基于传统的数据分析方法。
事实上,对于数据多大能称之为“大数据”,业界并没有统一的认识,通常认为100TB太字节是大数据的门槛。简而言之,传统方法无法处理的数据即为大数据。
大数据的产生得益于移动互联网以及智能手机、各种智能穿戴产品的发展,人们行为、位置,甚至身体的生理特征等数据都可以便捷地被记录,这使海量数据采集成为可能。事实上,目前数据采集量正呈现快速的增长趋势。一家国际数据统计机构最新预测指出,2020年,全世界产生的数据量有望达到40ZB泽字节,1泽字节等于10亿太字节。
但大数据不能单纯理解为数据大。大数据研究专家、北京航空航天大学校长怀进鹏表示,大数据具有“规模大、变化快、种类杂、价值密度低”四个特征,是对传统计算和思维方式的一种挑战。
首先,因为几乎每个数据点都可以采集,全面数据代替了抽样、片面、局部的数据。“拿炒菜打比方,传统的抽样,我们需要在开始和中间时候‘尝一尝’,‘尝一尝’就是抽样数据,但在大数据时代,随机抽样的方式可能就失效了。”怀进鹏说。
怀进鹏认为,因为抽样分析时数据测量能力有限,统计追求的是精确,希望用最少数据获得最多的信息。而大数据比较杂乱,完整的精确不存在,也不再是追求的绝对目标,大数据只需对宏观趋势给出快速预测。
另一个改变是,从关注因果转向数据之间关联。在大数据时代,“数据背后的原因不再重要,人们只需要知道数据之间有统计相关性就行。仅需知其然,无需知其所以然。”怀进鹏说。
在大数据的支持者看来,数据已经能够自己说话,传统的科学统计模型已经过时,理论也可能被终结。
大数据营销大多是噱头,一些机构甚至无法收集海量数据
被誉为开大数据系统研究先河之作的《大数据时代》作者指出,大数据是社会的一种新型能力:以一种前所未有的方式,通过对海量数据进行分析,获得巨大价值的产品和服务,或深刻的洞见。
大数据蕴含的发现事实、挖掘价值、预测未来的洞察力,也是各色大数据营销的理论出发点。实际上,大数据洞察力确实在公共卫生、交通运输等行业开始发挥。
中国疾病预防控制中心副主任、中科院院士高福也认同大数据在公共卫生预防控制上的作用。他说,通过大数据,可以在流感到来之前为人们提供一些解释性信息,为流感的预防提供缓冲时间。
同样,在智能交通时代,海量车辆信息没法通过传统方式分析,但借助大数据,则可能提前预测未来的车流量、行进路线等信息,从而为改善城市交通状况提出优化方案。
然而,“自己能够讲话的大数据”,是否真如营销人员畅想得那么美好?
分析人士指出,数据存储和搬运虽然越来越便利,但目前大数据应用面临着数据收集,管理、分析海量数据并创造价值的挑战。
“如果将数据比作书,书增多后,首先要找到储存大数据的‘大图书馆’,下一步则要解决数据查询问题,没有好的查询引擎,书找不到,数据也就很难利用。” 百度大数据总监李钢江说。而现实是,大部分机构和企业都没有海量数据收集存储以及分析管理的能力。
业内人士指出,大数据在一些领域的营销还只是噱头,先不论大数据分析结果是否有效,有些行业连基本的大数据采集和管理条件还不具备,更谈不上精确定位和预测。
百度高级副总裁王劲也表示,传统的数据库没有管理大数据的能力,传统行业如何进入大数据时代,利用大数据价值,是摆在很多行业面前的新课题。
提升计算能力和降低云存储成本,将有利于大数据技术变革
百度首席执行官李彦宏认为,随着计算能力的提升和云存储等技术产品成本的不断降低,大数据走到了技术变革的临界点。不久前,百度就推出了“百度大数据引擎”,百度希望借助该工具,对大数据进行收集、存储、计算、挖掘和管理,并通过深度学习技术和数据建模技术,使数据具有“智能”的技术能力,服务传统行业。
据了解,百度大数据引擎包括开放云、数据工厂、百度大脑三大组件。其中,开放云解决的是数据存储和计算问题;“数据工厂”则对行业数据进行规范化处理,提供数据管理和分析;而“百度大脑”则让机器和人脑一样思考,分析处理数据。
不过,分析人士指出,虽然各方面为挖掘大数据开发了很多工具,但大数据的成熟应用还有很长一段时间。首先,数据杂乱,价值密度低,如何有效的收集数据信息仍没有成熟的方案。同时,数据的规模并不能决定一切,不论是那种数据分析方式,都可能存在统计上的缺陷,不能说数据更大、更新、更快就没有问题。
英特尔中国研究院首席工程师吴甘沙表示,大数据作为一种新的数据形态和实践,它将丰富数据应用方法,却不能取代传统统计分析方法,更不能神化大数据。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20