大数据/SaaS/物联网,2015年的风口在哪里
雷军说,站在台风口上,一头猪都能飞起来。找准市场的潜在热点,你成功的几率就会大增。在这样的市场里更容易招到好的人才、有更多露面的机会,更容易融资,也更容易退出。那么2015年的风口在哪里呢?我们来听听Elad Gil的看法。
初创企业退出的平均时限是 7 年。而站在风口上则可以大大缩短退出时间。1990 年代末,由于互联网热潮的兴起,被收购或 IPO 的时间仅仅是 2、3 年。最快的退出方式是并购。
而要想成功 IPO 通常需要有 5000 万美元的收入,还要有几个季度的盈利。不过如果处在风口的话,对盈利的要求也许就没那么高,甚至还可以宽松一阵子(比方说大数据热潮下 Hortonworks 的 IPO 就是例子)。
风能刮多久?
历史资料表明,那些挂起的风球有 50% 的概率是假预报。例子包括 1980 年代的第一波人工智能热,2000 年代早期的纳米技术热,以及 2000 年代中期的清洁技术和 2000 年代晚期的地理定位热。
而成功刮起来的风包括社交网络(2000 年代中期—Facebook、Twitter、LinkedIn)以及移动社交(2010 年代早期—WhatsApp、Instagram)。
那么 2015 年可能的风口在哪里呢?
2015年的风口
1、飓风—可能催生大型独立公司和众多收购的市场
大数据
所谓的“大数据”可细分为四个领域:
(1)大规模数据处理(Hadoop、Spark 等)
(2)智能数据。如分析性工具获数据科学家使用的工具。
(3)数据中心基础设施(有时归为“大数据”)。如 Mesos(及 Mesosphere)。
(4)垂直数据应用(如针对医保索赔的数据存储和分析)
这个市场会创造出独立上市公司,也会产生大量收购。潜在的收割者包括传统的企业巨头(HP、IBM 等),以及该领域有流通股或市值很大的早期公司(如 Cloudera,、Hortonworks)等。此外,医疗保健方面(及其他 2、3 个关键领域)的垂直型数据公司可能会被更加专业的收购者收购(如 UnitedHealth)。
SaaS(软件即服务—含API/开发者工具)
如最近一些公司(Zenefits 和 Slack)爆发式增长所表明那样,SaaS 在企业协作、人力资源管理等方面还有着非常多的机会。
这个领域未来几年内每年会冒出 1、2 家非常大的公司(或退出)不足为奇。关键是找到差异化的有机分发模式(Slack)或业务模式(Zenefits)。
为了避免市场过于细化,此处将 API/ 开发者工具也归为一类。把许多服务做成 API 是行得通的,因为传统上其执行方式过于笨重。Stripe 和 Twilio 就是这类趋势的两个典范,Checkr.io 则是更近一点的例子。
基因组技术
基因组学尚未进入主流炒作周期。但由于市场发生的根本性转变,到了 2015 末 2016 初有可能会成为投资热点。这可能会催生大片的未来投资,也可能产生 1 亿至数十亿美元的退出。这一波基因组浪潮可能会推出独立的基因组软件公司(IBM、Oracle、Google、Illumina 等是可能的买家),也会出现更多的传统以生物学为中心的基因组学公司(医药与传统生物科技公司为买家)。这个领域会诞生少量大型的上市公司。
2、狂风—会有许多收购但是否会出独立公司不太清楚人工智能(AI)
有两类 AI 公司:
(1) 开发通用型 AI 或“一般 AI 平台”的公司
(2) 应用 AI 解决非常专门的问题或客户需求的公司(如网页的机器翻译或筛选病例样本)
第一类公司会被 Google、Facebook 等少数公司以人才收购的方式收购掉。第二类公司可能会诞生少量大型的独立公司。我更看好第二类,因为此类公司真正创造价值。不过,如果你主要对快速退出感兴趣的话,第一类公司会卖得更快,1 到 4 年就能以很好的估值卖给 Google 等试图囤积机器学习人才的公司。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口 ...
2025-02-24“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01