京公网安备 11010802034615号
经营许可证编号:京B2-20210330
游戏场景管理的八叉树算法是怎样的_数据分析师
八叉树(octree)是三维空间划分的数据结构之一,它用于加速空间查询,例如在游戏中:
总括而言,前3个应用都是加速一些形状(frustum、ray、proximity shape如球体)的相交测试(intersection test)。
简单来说,八叉树的空间划分方式是,把一个立方体分割为八个小立法体,然后递归地分割小立方体。
图片来源Wikipedia Octree
相似地,四叉树把一个正方形空间分割成四个小正方形。由于三维空间较难理解,之后本答案主要以四叉树作图示解释。
四/八叉树有多种变种,先谈一个简化的情况,就是假设所有物体是一个点,这样比较容易理解。
把每点放到正方形空间里,若该正方形含有超过一个点,就把该正方式分割,直至每个小正方形(叶节点)仅含有一个点,就可以得出以下的分割结果:

图片来源:CS267: Notes for Lecture 24, Apr 11 1996
这种做法是adaptive的,就是说按照一定的条件(叶节点只能有一个点)来进行分割。实际上,我们可以设置其他条件去决定是否分割一个叶节点,例如节点内的点超过10个,或是最多分割4层就不再分割等等。
在分割时,我们只需检查点是在每个轴的哪一方,就能知道该点应放置在哪个新的节点里。
建立了一个四/八叉树之后,我们可以得出一个重要特性:
如果一个形状S与节点A的空间(正方形/立方体)不相交,那么S与A子树下的所有点都不相交。
那么,在相交测试中,我们可以从根节点开始,遍历四/八叉树的节点,如节点相交就继续遍历,如不相交就放弃遍历该子树,最后在叶节点进行形状与点的相交测试。这样做,一般能剔除许多点,但注意最坏的情况是所有点集中在一起,那么就不起加速作用。
———————-
9月4日晚更新
当创建了一个四/八叉树之后,如问题所提及,有时候需要新增、删除物体(目前我们谈及的是点),以及更新物体(点)的位置。
更新位置的最简单实现,就是删去物体再重新安插。然而,显然的优化方法就是,检查旧位置和新位置是否位于同一个叶节点的正方/立方范围里,如果没超出范围,就不需要做删除再安插的工作。
但如果超出范围呢?除了简单地从根开始找合适的节点,也可以使用一些搜寻方法找到相邻的节点,如[1]。这里就不谈这些细节了。
了解最基本的四/八叉树后,可以把问题扩充至管理占面积/体积的物体。虽然我们可以每次比较场景物体和正方形/立方体是否相交,但为了性能,一般是使用物体的包围体(bounding volume)而不是物体本身。例如是使用包围球(bounding sphere)、轴对齐包围盒(axis-aligned bounding box, AABB)或定向包围体(oriented bounding box, OBB)。这个做法是保守的。
但无论是用物体的精确形状,还是使用包围体积,把它们放置在四/八叉树中会有一个问题:它们可能会与节点的边界相交。例如
图片来源:Akenine-Moller, Tomas, Eric Haines, and Naty Hoffman. Real-time rendering 3rd edition. p.655, AK, 2008.
在上图中,七角星最后处于两个叶节点。这时候至少有两个解决方法:
第一种方法的范围比较精确,但如果物体的大小相差很大,大体积的物体便需要被大量小范围的叶节点引用,而且管理上也会很麻烦。第二种做法是较常用的方法。然而,第二种方法的范围可能非常大,例如物体刚好在场景的中心,即使是一个体积很小的物体,都只能放于根节点里。
要解决这个问题,可以考虑到在相交测试中,扩大包围盒总是保守的(这里的保守是指近似化不会做成错误结果)。如果把四叉/八叉树的正方/立方空间当作包围盒,那么扩大这些包围盒以容纳刚好在边界上相交的物体也是保守的。这就是松散四/八叉树(loose quadtree/octree)[2] 的思路。
图片来源:Akenine-Moller, Tomas, Eric Haines, and Naty Hoffman. Real-time rendering 3rd edition. p.656, AK, 2008.
以上所说的都是一些基本原理,在实现时要考虑具体的数据结构、内存布局等问题。现在一般认为,完全使用八叉树可能不利于缓存,用一些扁平的结构并利用SIMD可能更可提高性能,或是需要混合的方案,如八叉树只有两、三层,叶节点内使用扁平的方式储存各种包围体。
因此,除了传统的四/八叉树实现,也可以参考一些更新的技术,例如OpenVDB [3]中的一些思路。
[1] Frisken, Sarah F., and Ronald N. Perry. “Simple and efficient traversal methods for quadtrees and octrees.” Journal of Graphics Tools 7.3 (2002): 1-11.
[2] Ulrich, Thatcher. “Loose octrees.” Game Programming Gems 1 (2000): 434-442.
[3] K. Museth, “VDB: High-Resolution Sparse Volumes With Dynamic Topology”. ACM Transactions on Graphics, Volume 32, Issue 3, Pages 27:1-27:22, June 2013. http://www.museth.org/Ken/Publications_files/Museth_TOG13.pdf
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15