美团推荐算法实践_数据分析师
推荐系统并不是新鲜的事物,在很久之前就存在,但是推荐系统真正进入人们的视野,并且作为一个重要的模块存在于各个互联网公司,还是近几年的事情。
随着互联网的深入发展,越来越多的信息在互联网上传播,产生了严重的信息过载。如果不采用一定的手段,用户很难从如此多的信息流中找到对自己有价值的信息。
解决信息过载有几种手段:一种是搜索,当用户有了明确的信息需求意图后,将意图转换为几个简短的词或者短语的组合(即query),然后将这些词或短语组合提交到相应的搜索引擎,再由搜索引擎在海量的信息库中检索出与query相关的信息返回给用户;另外一种是推荐,很多时候用户的意图并不是很明确,或者很难用清晰的语义表达,有时甚至连用户自己都不清楚自己的需求,这种情况下搜索就显得捉襟见肘了。尤其是近些年来,随着电子商务的兴起,用户并非一定是带着明确的购买意图去浏览,很多时候是去“逛”的,这种情景下解决信息过载,理解用户意图,为用户推送个性化的结果,推荐系统便是一种比较好的选择。
美团作为国内发展较快的o2o网站,有着大量的用户和丰富的用户行为,这些为推荐系统的应用和优化提供了不可或缺的条件,接下来介绍我们在推荐系统的构建和优化过程中的一些做法,与大家共享。
从框架的角度看,推荐系统基本可以分为数据层、触发层、融合过滤层和排序层。数据层包括数据生成和数据存储,主要是利用各种数据处理工具对原始日志进行清洗,处理成格式化的数据,落地到不同类型的存储系统中,供下游的算法和模型使用。候选集触发层主要是从用户的历史行为、实时行为、地理位置等角度利用各种触发策略产生推荐的候选集。候选集融合和过滤层有两个功能,一是对出发层产生的不同候选集进行融合,提高推荐策略的覆盖度和精度;另外还要承担一定的过滤职责,从产品、运营的角度确定一些人工规则,过滤掉不符合条件的item。排序层主要是利用机器学习的模型对触发层筛选出来的候选集进行重排序。
同时,对与候选集触发和重排序两层而言,为了效果迭代是需要频繁修改的两层,因此需要支持ABtest。为了支持高效率的迭代,我们对候选集触发和重排序两层进行了解耦,这两层的结果是正交的,因此可以分别进行对比试验,不会相互影响。同时在每一层的内部,我们会根据用户将流量划分为多份,支持多个策略同时在线对比。
数据乃算法、模型之本。美团作为一个交易平台,同时具有快速增长的用户量,因此产生了海量丰富的用户行为数据。当然,不同类型的数据的价值和反映的用户意图的强弱也有所不同。
用户主动行为数据记录了用户在美团平台上不同的环节的各种行为,这些行为一方面用于候选集触发算法(在下一部分介绍)中的离线计算(主要是浏览、下单),另外一方面,这些行为代表的意图的强弱不同,因此在训练重排序模型时可以针对不同的行为设定不同的回归目标值,以更细地刻画用户的行为强弱程度。此外,用户对deal的这些行为还可以作为重排序模型的交叉特征,用于模型的离线训练和在线预测。
上文中我们提到了数据的重要性,但是数据的落脚点还是算法和模型。单纯的数据只是一些字节的堆积,我们必须通过对数据的清洗去除数据中的噪声,然后通过算法和模型学习其中的规律,才能将数据的价值最大化。在本节中,将介绍推荐候选集触发过程中用到的相关算法。
提到推荐,就不得不说协同过滤,它几乎在每一个推荐系统中都会用到。基本的算法非常简单,但是要获得更好的效果,往往需要根据具体的业务做一些差异化的处理。
则logLikelihoodRatio=2 * (matrixEntropy – rowEntropy – columnEntropy)
其中
rowEntropy = entropy(k11, k12) + entropy(k21, k22)
columnEntropy = entropy(k11, k21) + entropy(k12, k22)
matrixEntropy = entropy(k11, k12, k21, k22)
(entropy为几个元素组成的系统的香农熵)
对于移动设备而言,与PC端最大的区别之一是移动设备的位置是经常发生变化的。不同的地理位置反映了不同的用户场景,在具体的业务中可以充分利用用户所处的地理位置。在推荐的候选集触发中,我们也会根据用户的实时地理位置、工作地、居住地等地理位置触发相应的策略。
区域消费热单
区域购买热单
搜索是一种强用户意图,比较明确的反应了用户的意愿,但是在很多情况下,因为各种各样的原因,没有形成最终的转换。尽管如此,我们认为,这种情景还是代表了一定的用户意愿,可以加以利用。具体做法如下:
对于协同过滤而言,user之间或者deal之间的图距离是两跳,对于更远距离的关系则不能考虑在内。而图算法可以打破这一限制,将user与deal的关系视作一个二部图,相互间的关系可以在图上传播。Simrank[2]是一种衡量对等实体相似度的图算法。它的基本思想是,如果两个实体与另外的相似实体有相关关系,那它们也是相似的,即相似性是可以传播的。
Let s(c,d) denote the similarity between items c and d, for c != d
O(A),O(B): the set of out-neighbors for node A or node B
I(c),I(d): the set of in-neighbors for node c or node d
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19