一个P2P平台的详细运营框架是怎样的_数据分析师
前言
运营分战略层运营和执行层运营。战略层运营考虑的是整个公司的资源、模式、预算、节奏;执行层运营根据战略定位执行提升流量、用户数、品牌、交易数据、销售数据等工作。前者只能是公司老板或者个别高层。
相比产品、技术,运营由于有额外的资源(钱)、有业绩压力,更需要考验领头人的决断能力和整个团队的执行能力,走错一步、走慢一步可能会带来很大遗憾。
问题是,在绝大部分互联网公司里,运营并没有得到应有的重视。大部分运营不过是在做打杂的事、在围绕KPI做临时抱佛脚的事。
所谓的应有的重视并不是指给运营更多的资源。是否坚定树立以运营为中心的网站观,让产品为运营服务、让技术为运营服务是其中最大的差别。过去互联网的发展先后走过了以编辑为中心、以技术为中心、以产品为中心的路线。早晚有一天,权力者们会明白,以运营为中心,彻底构建产品、技术、内容为运营服务的文化,运营指哪打哪,才是一个网站的合理运行之道。
理论上说,CEO的职位就是干这个的。无奈众多互联网公司的CEO往往只是PR、BD,或者与资本市场沟通的角色,很难要求CEO深入到业务层面做扎实的运营规划工作和执行监督工作,自然无法依赖CEO做出执行层正确的判断(战略层的运营才是其重点工作)。因此运营带头人的工作变得无比重要。
至于如此文化和压力下运营是否能做出正确的决策、是否能尊重用户、是否能熟悉业务、是否不依赖资源硬推广,一切看结果,结果不理想就可以考虑换人,直到外部找到或者内部提拔到合格的运营为止。
产品思维是:我要做一个NB的、完美的功能或者竞品分析、用户分析后觉得我们应有的产品/功能,解决用户需求。
技术思维是:需求写清楚我就做,不写清楚就打回去想清楚。
运营思维是:首先必须建立一套数据监测体系跟踪评估我们的努力。其次考虑现有资源和现在市场环境,我们要出一个功能/活动,目的是***,N天内必须上,考虑到时间,产品别浪费时间写事无巨细的PRD,技术别只埋头写代码挑剔需求,需求阶段就必须给产品足够的协助,需求大概沟通清楚就必须开始,大问题事前解决,再有问题事中事后解决。结果好坏我们看数据监测,无论好坏都总结经验教训,做好了团队立刻有奖励。
哪种思维更符合互联网的发展趋势和企业管理原理呢?不言自明。
作为一个网站,P2P平台有很多互联网网站早已摸索总结出来的特性,譬如(有效)流量是基础、(活跃)用户数是根本、交易数据是命脉。一切运营执行层的打法,结合平台模式和自身资源,都围绕这三个数据的提升去工作。而P2P平台自身的特性又在这三个关键指标的提升中暴露得非常明显。
流量
流量分付费流量和免费流量。
付费流量又分精准流量和非精准流量。精准流量渠道主要是SEM、金融网站/公众号,非精准流量就是一切有大流量的网站/客户端/APP端如各类大型社区、网址站、工具软件等。
免费流量主要依赖SEO、平台自身微信/微博、大型社区。
有钱的平台73分,没钱的平台37分。
没有什么比(有效)流量更基础了。
一个功能强大的流量监测工具是流量工作的必备。
流量分析是网站分析工作中最基本的一环。
流量来源渠道分析是流量分析中最重要的。
有钱的平台砸一遍基本就能知道各渠道流量质量如何,优质渠道投入资源固定维护关系,普通渠道定期关注即可。
对新流量渠道开拓的工作应是孜孜不倦的。
用户数
流量来了,怎么变成用户?
P2P网站根据自身模式,往往有两类用户,1借款人/企业;2投资者。
1类用户很难拓展,大部分来源于线下合作,提升该类用户更多靠BD和平台背景,这里重点谈下投资者。
投资者选择平台的原因各种各样,但本质上还是冲收益高、安全和体验去。
标的的基本收益完全依赖于战略层的定位改变不了。
不过红包类活动、新手标类设计是最容易刺激新用户注册的。
此外观察行业竞品收益率变化甚至其他热门金融产品收益率变化,也会有一定文章可做。
安全能被分解成无数要素,可能是平台背景、模式、流动性等。
网站的内容更新、产品设计、页面UI设计、技术支持上,必须围绕这些因素去设计。
网站越让人感觉安全,用户越容易注册。
体验分网站使用体验和投资体验,前者靠产品和交互,后者靠产品和客服,骨子里都靠技术。
此外,第三方平台的口碑,负面信息的影响,也非常重要需要定期维护。
用户注册了,怎么变成活跃用户?
首先还是得依赖良好的数据监测系统。一个强大的用户监测系统能够筛出不同特性的用户,从而让运营人员接近、分析、了解用户。运营人员越贴近用户,越能明白怎样让他们变活跃。股票行情好的时候投资者固然会抽出资金,年终奖即将发放,平台也应考虑这块难得的小肥肉。
P2P网站本质上是交易型网站,用户来了就走。P2P又不像电商,用户可以高频次交易。
怎么刺激用户变成活跃用户?让他们多投资、多交流、多学习、多见面。
投资的话题下边谈到交易数据再讲。
交流是给投资者一个论坛。固然这样透明的交流场所会放大平台的缺点,然而也会加倍放大平台的优势。众多谨慎的投资者是在论坛和QQ群中逐渐对平台产生信任。
学习是给投资者一个教育环境。受行业低级平台和民间投资公司、担保公司牵累,平台受的不白之冤太多。如何给投资者更好的理财教育而不是粉饰宣传,需要用心,投资者不是傻子。此外,P2P不过是投资者资产配置中的一环而已,不应过分贬损其他金融理财工具。宣传时只强调收益也是较初级的宣传手段。
见面是拉近平台与投资者的重要手段。见面会不单可以听取意见宣传品牌,还可以承载重要的拉投资的功能。金融行业永远需要对客户区别对待,一个大客户及大客户身边的人脉胜过无数小客户,如何挖掘客户身边的人脉不能仅仅通过简单的产品设计。定期举办公开/不公开的客户见面会,有助于平台更好地凝聚投资者。这是P2P网站和一般网站明显不同的环节,也是互联网人不习惯做的领域。
交易数据
如前所述,借款项目取决于BD和平台背景。在被众多担保公司不负责任教育后的当今投资者市场和媒体报道环境,平台单纯依赖担保公司、小贷公司输入借款项目已经捉襟见肘。P2P行业会越来拼借款项目的获取能力,投资者也会越来越看重平台这方面的能力。
如何提升投资数据?
相比借款数据,投资数据比较容易提升。
除基本的加强流动性工具设计外,对投资者基本利益的重视往往从客服电话、客服QQ、QQ群中就能感知到。P2P行业的客服不应是只会机械背话术打字的廉价劳动力。平台客服应是投资者专业的P2P理财顾问,她们更多需要站在投资者的角度去解决客户疑惑去关心客户,少一点站在平台的角度搪塞回避问题。理想化一点,客服应该是最熟悉业务的岗位,是用户需求的感知者,也是产品推进的原始驱动力。
往往越是以产品为中心、以技术为中心的项目越不会重视客服。只有以运营为中心,才会把一线接触用户的客服当成是宝贝。眼下口碑较好的平台,哪家CEO和高管不都在维护客户利益发出平台声音?
人人都应是自家平台的客服。相比起给平台挑bug、提创意、上功能,重视及迅速解决客户的每一个实质问题更重要。
以用户为中心是互联网人早已达成的共识,不过这个理念在金融领域并不是互联网领域常见的做用户调查、画像、访谈。只有平台真正对投资者好、急投资者所急,敢于跳出所谓的规章制度流程时间的限制,去解决投资者的问题,这才能真正受到投资者的爱戴。
否则,业内有家页面粗糙(未改版前)、收VIP费用、屡爆危机、老板既非专业互联网背景也非专业金融背景更没有线下事业做支撑,是如何受到投资者的热捧从未掉出top5呢?
赢得了投资者的心。
(注:不代表我不觉得他们没问题,只代表投资者对其认可度的不可思议现象背后的分析)
有别于其他互联网领域,P2P网站,用户间的彼此影响是被放大的。一点点好会被投资者疯狂传播,一点点坏也会被投资者疯狂传播。这本质上跟线下其他金融公司是相似的。在涉及到财富的领域,不考虑政府硬加的门槛设置,专业的投资者服务、口碑维护远远比一切更重要。
最后,无论是战略层运营还是执行层运营,最缺的永远是人,最容易忽视的工作也永远是人。
P2P这个领域,既跟互联网相关又跟金融相关,很难找到两边知识储备都有且足够专业的战力。
无论是公司层面还是部门层面,相应的培训、知识沉淀、薪酬机制、淘汰机制都必须跟上,否则人员流动和凝滞都会制约发展。小平台固然可能沦落成给大平台培养战力的跳板,大平台也可能变成给小平台培养中高层的工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31